RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Higher modes contribution for estimating the inelastic deformation ratios and seismic demands of structures

        Abdelmounaim Mechaala,Chikh Benazouz,Hamma Zedira,Youcef Mehani,Samy Guezouli 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.2

        In order to estimate the seismic demand by using the nonlinear static procedure, different approximate methods have been developed. One of the most useful methods is called displacement coefficient method (DCM), which is based on some modification factors. One of these coefficients denoted 1 C , concerns the inelastic deformation ratio and usually depends on either the yield-strength reduction factor or the ductility factor. In general the evaluation of the inelastic deformation ratio is based on the response of single degree of freedom (SDOF) systems, where the response of the structure is mainly controlled by the fundamental mode, knowing that the inelastic deformation ratio will not capture the contribution of higher modes in the overall structural response. A developed theoretical approach with the aim of estimating the inelastic deformation ratio for structures, considering contribution of higher modes of vibration, is introduced. In this assessment, the normalized yield strength coefficient (η) and the post-to-preyield stiffness ratio (α) are key factors. The results are compared to the uncoupled modal response history analysis (UMRHA) procedure and some existing formulations for a nine story building subjected to the El Centro 1940 ground motion. It appears that the new theoretical approach leads to enough accurate estimation of the inelastic deformation ratio compared to the UMRHA one.

      • Numerical investigation of the hysteretic response analysis and damage assessment of RC column

        Abdelmounaim Mechaala,Benazouz Chikh,Hakim Bechtoula,Mohand Ould Ouali,Aghiles Nekmouche Techno-Press 2023 Advances in computational design Vol.8 No.2

        The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼