RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Gaetice depressus (Crustacea, Varunidae): Species Profile and Its Role in Organic Carbon and Nitrogen Flow

        A'an J. Wahyudi,Shigeki Wada,Masakazu Aoki,Takeo Hama 한국해양과학기술원 2015 Ocean science journal Vol.50 No.2

        Gaetice depressus is one of the most dominant macrozoobenthos species in boulder shores of intertidal coastal ecosystems in Japan. As recorded in previous studies, this species is also considered as having high density and biomass. Consequently, it is thought to be one of the more important species in the organic matter flow of boulder shores, especially through the food web. In this study, some taxonomic problems related to G. depressus were tackled and the autoecology and ecological processes in the intertidal ecosystem of G. depressus, such as organic matter flow, were investigated. Furthermore, in order to clarify the taxonomy description, resolve inconsistencies in the scientific name, and learn about the life history, a literature review was conducted. Seasonal changes in density, morphology pattern and population structure were determined based on the data obtained in Ebisu Island, Japan. Then, the role of G. depressus was determined by estimating the intake and emittance fluxes of organic carbon and nitrogen through ingestion and egestion process in the boulder shores of Ebisu Island. A feeding rate experiment was also conducted in order to estimate the intake flux by using the catch-release-recapture method. Meanwhile, to estimate the emittance flux, a defecation rate experiment was conducted by catching some individuals of G. depressus, and then incubating them in the laboratory. The feeding rate measured by the speed of diet consumption of G. depressus was about 12.6 mg ind-1 h-1. Considering the average density, the intake flux through the feeding process could be estimated as 25.2 mgC m-2 h-1 and 2.6 mgN m-2 h-1. On the other hand, G. depressus egested fecal pellet at the rate of 5.4 mg ind-1 h-1. The average emittance flux through the fecal pellet egesting process is estimated at 5.6 mgC m-2 h-1 and 0.7 mgN m-2 h-1. Therefore, it can be estimated that about 25% of organic matter from diet is egested as fecal pellet, which means that about 75% of the intake flux of organic carbon and nitrogen is used for the total assimilation of G. depressus. Intake flux was also considered as affecting the high dynamism of primary producer consumption. The total population of G. depressus is estimated to consume about 18.4% of primary producer in average throughout the year. Therefore, the turnover time of primary producer by consumption of G. depressus was about five days.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼