RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI우수등재
      • KCI등재

        L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -

        이순혁,윤성수,맹승진,류경식,주호길 한국농공학회 2003 한국농공학회논문집 Vol.45 No.5

        This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study.Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method.Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error

      • KCI등재

        Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (Ⅱ)

        이순혁,류경식,Lee , Soon-Hyuk,Ryoo, Kyong-Sik 한국농공학회 2004 한국농공학회논문집 Vol.46 No.5

        This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. The optimal regionalization of the precipitation data were classified by the above mentioned regionalization for all over the regions except Jeju and Ulleung islands in Korea. Design rainfalls following the consecutive duration were derived by the regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root mean square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared between the regional and at-site frequency analysis. It has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design rainfall. Consequently, optimal design rainfalls following the classified regions and consecutive durations were derived by the regional frequency analysis using Generalized extreme value distribution which was identified to be more optimal one than the other applied distributions. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

      • 月流出量의 推計的 模擬發生에 관한 硏究

        李淳赫,孟昇辰 충북대학교 농업과학기술연구소 1993 農業科學硏究 Vol.11 No.1

        This study was conducted to simulate long series of monthly flows by Harmonic synthetic model and to compare with statistical parameters which were derived from synthetic flows and the observed data at two watersheds in the Geum river basin. The results summarized through this study are as follows. 1. Arithmetic mean values of synthetic monthly flows simulated by Harmonic synthetic model are much closer to the results of the observed data in July. On the other side, relative errors for those of the dry season of January, April and December at Gyu Am watershed and January, February, April and December at Gong Ju watershed make a little defference between the observed data and synthetic monthly flows. 2. In comparison with the coefficients of variation, index of fluctuation for monthly flows simulated by Harmonic synthetic models are much closer to the results of the observed data in July. But, relative errors of May and June at Gyu Am and Gong Ju watersheds make a little defference between the observed data and synthetic monthly flows. 3. It was found that synthetic monthly flows based on Harmonic synthetic model are considered to give better results during July and August. But, the other synthetic monthly flows are seemed to be larger than observed data in the applied watersheds. 4. Continuation studies by comparison with other simulation techniques are to be desired for getting reasonable generation technique of synthetic monthly flows for the main river systems in Korea.

      • KCI우수등재

        재현기간별 확률 향우강도식 산정에 관한 수문통계학적 고찰-청주 지방을 중심으로-

        이순혁 한국농공학회 1975 한국농공학회논문집 Vol.17 No.3

        The author attempted to find most suitable formulas for probable rainfall intensities with analysis and consideration for characteristics of rainfall intensities according to the short and long period return periods at Cheong-Joo district. Above mentioned formulas induced by this study can be contributed to the credibility of runoff estimation for urban sewerage system, drainage works in small catchment area and embankment works in the rivers. The results of this study are summarized as follows: 1 Calculation values by Gumbel-Chow method were selected as a mean values for the calculation of probable rainfall intensities according to return periods in the short period. 2. Calculations for probable rainfall intensities for long period are based upon to the result by Iwai's method. Talbot type, {{{{I= {a} over {t+b} }}}} is confirmed as a most suitable formula for probable rainfall intensities among calculation methods in the short periods at Cheong-Joo district. 4. Specific coefficient method, I24=RN24${\beta}$N was selected as a means of calculation for suitable formulas of probable rainfall intensities according to return periods in case of long period. 5. Runoff estimation with high credibility by rational formula can be anticipated by establishment for the most suitable probable rainfall intensities at Cheong-Joo district.

      • KCI우수등재
      • KCI우수등재

        소하천수계의 단위유량도 유도 및 비교에 관한 수문학적 고찰

        이순혁 한국농공학회 1978 한국농공학회논문집 Vol.20 No.3

        This studies were conducted to derive synthetic unitgraphs and triangular unitgraphs correlated with watershed characteristics which can be used to the estimation and control of flood for the rational development of Agricultural water resources. Derived Synthetic unitgraphs and Triangular unitgraphs can be applied to the ungaged watersheds were compared with average unitgraphs by observed data. Seven small watersheds were selected as studying basins Han, Geum, Nakdong, Yeongsan and Inchon river system. The results summarized for these studies are as follows: 1. Average unitgraphs by observed data and dimensionless unitgraphs for synthesis were derived for all river systems. 2. Peak discharge per unit area of the unitgraph, qp, was derived as qp=10-0.389-0.0424Lg with a high significance. 3. Formulas for the base width of unitgraph of 50 and 75 percent for peak flow for each water systems was adopted as Table 5. 4. The base length of the unitgraph, Tb, in hours in connection with time to peak, Tp, in hours was expressed as Tb =4.3Tp. 5. Peak discharge, Qp, were obtained as Table 6 by the Triangular form to all subwatersheds. 6. Relative errors in the peak discharge of the synthetic unitgraphs showed to be 7.3 percent to the peak of observed average unitgraphs except errors of peak discharge for Yeongsan river system. This indicates that Synthetic unitgraphs for the small watersheds of Han, Geum, Nakdong and Inchon river systems can be applied to the ungaged watersheds. On the other hand, It was confirmed that the accuracy of Instantaneous Unit Hydrograph with only 1.6 percent as relative errors was approaching more closely to the observed average unitgraph than that of synthetic unitgraph with relative errors. 23.9 percent for Yeongsan river system. 7. Errors in the peak discharge of the triangular unitgraph to the observed average unitgraph showed to be 0.6 percent to 7.5 percent which can be regarded as a high precision within the range of 200 to 500$\textrm{km}^2$ in area. On the contrary, application of triangular unitgraph within the range of 200$\textrm{km}^2$ in area has defined as a unsuitable method because of high relative errors, 26.4 percent to 61.6 percent.

      • KCI우수등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼