RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정

        장성형,서상용,고진석,Jang, Seong-Hyung,Suh, Sang-Yong,Go, Gin-Seok 대한자원환경지질학회 2006 자원환경지질 Vol.39 No.6

        한국지질자원연구원은 1997년부터 새로운 에너지 자원으로 활용 가능성을 포함하고 있는 가스 하이드레이트를 조사하기 위해 동해 일원에서 탄성파탐사를 실시하고 있다. 탄성파 반사자료로부터 가스 하이드레이트 부존여부를 확인하는 방법은 해저면과 평행하면서 위상이 반대로 나타나는 고진폭 반사파 Bottom Simulating Reflector (BSR)과 BSR상부에서의 진폭감소, 하부에서 진폭증가와 구간속도 감소 둥을 들 수 있다. 대용량 탐사자료로 구성된 탄성파 반사자료에 깊이영역 구조보정을 적용하기 위해서는 고성능 컴퓨터와 병렬처리 기술이 필요하다. PSPI법은 적은 컴퓨터 계산량과 효율성 그리고 주파수 영역에서 구조적으로 병렬화가 용이한 특성을 지니고 있어 구조보정에 많이 이용되고 있다. 여기에서는 동해 가스 하이드레이트 탄성파 반사자료에 대한 일반자료처리와 함께 BSR로 여길 수 있는 구간에 대해 message passing interface_local area multicomputers(MPI_LAM)으로 병렬 코드화된 MPI PSPI를 이용하여 깊이영역 중합 전 구조보정에 적용하였다. 중합 전 깊이영역 구조보정 입력자료를 위한 속도모델은 자체 개발된 지오빗을 이용하여 중합 단면도로부터 지층경계면을 구하고 중합속도를 이용하여 제작하였다. BSR은 시간영역구조보정 된 중합 단면도상에서 음원모음도 3555-4162 사이와 왕복주시 2950 ms 부근에서 확인되지만 깊이영역 단면도에서는 해수면 6 km에서 17 km사이, 해저면에서 약 2.1km 깊이영역에서 나타남을 알 수 있다. 또한 구조보정 결과 반사파 에너지가 집중되는 지점에서 영상화가 잘 이루어지므로 관심대상 지역에 에너지를 많이 보낼 수 있는 자료취득변수를 결정해야 함을 알 수 있다. In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

      • KCI등재

        주파수영역에서 49점 가중평균을 이용한 scalar 파동방정식의 유한차분식 정확도 향상을 위한 연구

        장성형,신창수,양동우,양승진,Jang, Seong Hyung,Shin, Chang Soo,Yang, Dong Woo,Yang, Sung Jin 대한자원환경지질학회 1996 자원환경지질 Vol.29 No.2

        Much computing time and large computer memory are needed to solve the wave equation in a large complex subsurface layer using finite difference method. The time and memory can be reduced by decreasing the number of grid per minimun wave length. However, decrease of grid may cause numerical dispersion and poor accuracy. In this study, we present 49 points weighted average method which save the computing time and memory and improve the accuracy. This method applies a new weighted average to the coordinate determined by transforming the coordinate of conventional 5 points finite difference stars to $0^{\circ}$ and $45^{\circ}$, 25 points finite differenc stars to $0^{\circ}$, $26.56^{\circ}$, $45^{\circ}$, $63.44^{\circ}$ and 49 finite difference stars to $0^{\circ}$, $18.43^{\circ}$, $33.69^{\circ}$, $45^{\circ}$, $56.30^{\circ}$, $71.56^{\circ}$. By this method, the grid points per minimum wave length can be reduced to 2.5, the computing time to $(2.5/13)^3$, and the required core memory to $(2.5/13)^4$ computing with the conventional method.

      • KCI등재

        음파검층과 밀도검층 자료에서 산출된 이방성 변수를 이용한 지층 구분

        장성형,김태연,황세호,Jang, Seonghyung,Kim, Tae Youn,Hwang, Seho 대한지질공학회 2017 지질공학 Vol.27 No.3

        지하 지층의 확인은 지표면 지질조사, 시추코어 분석, 시추코어 관찰, 물리검층 자료 분석 등의 다양한 방법을 이용한다. 이 가운데 물리검층 자료는 원위치에서 연속적으로 물성을 제공하므로 시추코어 분석 자료와 더불어 지층의 확인에 활용되고 있다. 본 연구에서는 완전파형 음파검층과 밀도검층 자료에서 이방성 변수를 구하고 이를 이용하여 지층의 구분에 적용하고자 하였다. 톰슨 이방성 변수(${\varepsilon},\;{\delta},\;{\eta}$)는 바쿠스(Backus) 평균법을 P파와 S파 속도, 밀도검층 자료에 적용하여 계산하였다. 이와 같은 방법을 캐나다 블랙풋의 물리검층 자료에 적용한 결과, 12개 구간으로 지층을 구분 할 수 있 수 있었다. 즉, 탄성파 속도 이방성을 반영하는 톰슨 이방성 값의 변화에서 지층의 구분이 가능하였고 지층 구분에 많이 이용하는 자연감마선검층 자료가 없는 경우에도 톰슨 이방성 변수를 이용하여 지층 구분이 가능함을 알 수 있었다. For the formation identification, surface geological survey, drill core analysis, core description and well log analysis are widely used. Among them well log analysis is a popular method with drill core analysis, since it measures continuously physical properties at in-situ. In this study we calculated Thomsen anisotropic parameters (${\varepsilon},\;{\delta},\;{\eta}$) after applying Backus averaging method to the P wave velocity, S wave velocity, and density logs. The well log data application of Blackfoot, Canada, shows the formation could be divided by 12 layers. This shows that Thomsen anisotropic parameters for identifying formation using anisotropic parameters is useful if there is no natural gamma log that is widely used for the formation identification.

      • KCI등재
      • 지오빗에 의한 가스 하이드레이트 탄성파 자료 음향임피던스

        장성형(Jang, Seong-Hyung),김영완(Kim, Young-Wan),도안후이히엔(Doan, Huy-Hien),서상용(Suh, Sang-Yong) 한국신재생에너지학회 2007 한국신재생에너지학회 학술대회논문집 Vol.2007 No.11

        속도와 밀도의 함수로 이루어진 음향 임피던스는 탄성파자로부터 물성변화를 확인하는 방법 중의 하나로 이용된다. 본 연구에서는 한국지질자원연구원에서 개발된 탄성파 탐사자료처리 무른모 지오빗올 이용하여 기본 자료처리를 실시하고, 음향 임피던스 변환 모듈올 적용하여 동해 가스 하이드레이트 현장자료에 대한 광역 임피던스변화를 구하고 이로부터 음향 임피던스 단면도를 구하고자였다. 음향 임피던스 단면도는 중합단면도상에서 음향 임피던스 변화를 보여주고 있으며 특히 왕복주시 2.9초 전후에서 해저면 반사파와 위상이 반대이며 고진폭을 나타내는 해저면 기인 고진폭 반사층으로 여길만한 지점에서 그 변화가 크게 나타남을 알 수 있었다. 탄생파자료는 10 Hz 이하 저주파 정보가 들어있지 않아 완전한 음향 임피던스를 구할 수 없으므로 층서해석이 이루어진 중합 단면도부터 광역 임피던스를 구하였다. 향후 시추자료를 활용할 경우 좀더 정확한 음향 임피던스 단면도를 생산할 수 있을 것으로 여겨진다.

      • KCI등재
      • KCI등재
      • KCI등재
      • KCI등재

        횡적등방성 특성을 갖는 단양 석회암의 수평응력차비 고찰

        장성형 ( Seonghyung Jang ),황세호 ( Seho Hwang ),신제현 ( Jehyun Shin ),김태연 ( Tae Youn Kim ) 한국지구물리·물리탐사학회 2017 지구물리와 물리탐사 Vol.20 No.4

        비전통 에너지 자원의 하나인 셰일가스를 개발하기 위해서는 수평시추와 수압파쇄가 필요하고 이 작업들은 수평 응력차비가 낮은 곳에서 실시한다. 수평응력차비는 일반적으로 최대 수평응력과 최소 수평응력을 측정하여 구하지만 동탄성계수와 이방성변수를 활용하여 구하기도 한다. 본 연구에서는 단양 석회암 암석코어 시료실험을 통해 이방성 특성을 살펴보고 수평응력차비를 구하였다. 단양 석회암체에서 퇴적 층리면에 수직, 45도, 수평방향으로 된 암석코어 시료를 성형하고 P파 속도, S파 속도, 밀도를 측정한 후 동탄성계수, 컴플라이언스계수를 구하여 수평응력차비를 계산하였다. 시료 분석결과 수평응력차비는 약 0.185로 제시하였다. 단양 석회암은 층리 대칭축에 따라서 P파, S파의 속도가 변화하여 Thomsen 매개변수 값도 이와 같은 특징을 잘 반영하고 있으며 수평응력차비는 포아송 비보다 컴플라이언스 값에 영향을 많이 받고 있다. 향후 SH파 속도를 측정할 경우 좀 더 정확한 암석물리 물성을 구할 수 있을 것으로 판단된다. To develope shale play which is one of unconventional energy resources, horizontal drilling and hydraulic fracturing are necessary and those are applied to the place where the differential horizontal stress ratio (DHSR) is low. The differential horizontal stress ratio is generally calculated by the minimum and maximum horizontal stress, but it is also calculated from dynamic elastic constants and anisotropic parameters. In this study we analyzed anisotropic properties through the core samples from Danyang limestone and calculated DHSR. The three types of core samples shaped in three directions (vertical, parallel and 45 degree to bedding) were used for laboratory test. We measured P-, S-wave velocities, and density and then calculated dynamic elastic constants, compliance and DHSR. According to the results of the core sample analysis the calculated DHSR is 0.185. Thomsen parameters of the Danyang limestone used in this study are characterized by the P- and S-wave velocities varying along the bedding symmetry axis. It is observed that the DHSR value is more affected by the change in compliance value than the Poisson's ratio. It is necessary to measure SH-wave velocity for more correct petrophysical properties.

      • 가스 하이드레이트 탄성파 자료 코다 파 (coda waves) 연구

        장성형(Jang, Seong-Hyung),서상용(Suh, Sang-Yong),김영완(Kim, Young-Wan) 한국신재생에너지학회 2007 한국신재생에너지학회 학술대회논문집 Vol.2007 No.06

        탄성파 코다 파는 두 수진기에서 기록된 탄성파 자료의 상호상관으로부터 두 신호에 대한 순간응답을 구하고 이로부터 지층정보를 구하는데 이용된다. 여기에서는 인공합성 탄성파 자료와 가스 하이드레이트 현장자료에 적용하여 상호상관 모음도와 가상음원 모음도 (virtual source)를 구하고자 하였다. 인공합성자료는 해저면 탄성파 탐사법 (ocean bottom seismic)을 모델로 이용하여 인공합성 탄성파 단면도를 제작하였으며, 탄성파 코다 파를 살펴보기 위해 인공 OBS 자료 중 첫 번째 트레이스를 가상음원으로 정하고 모든 음원 모음도와 상호상관으로 가상응원 단면도를 제작하였다. 현장자료 적용으로는 해저면 기인 고진폭 반사파인 BSR (bottom simulating reflection)을 포함하고 있는 자료를 선정하여 상호상관 단면도와 가상음원 단면도를 제작하였다. 중합단면도상에 나타난 가스 분출지역은 상호상관 단면도에서도 나타났으며, 중합단면도상 BSR부분은 vs 단면도에서 강한 반사파를 보여줌을 알 수 있었다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼