RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 로봇을 이용한 원격탐사를 위한 3차원 센서 시스템 개발

        윤재식(J. S. Yoon),박재한(J. H. Park),백문홍(M. H. Baeg),신용득(Y. D. Shin),장가람(G. R. Jang),배지훈(J. H. Bae) 제어로봇시스템학회 2012 제어로봇시스템학회 합동학술대회 논문집 Vol.2012 No.7

        원격탐사 시 3차원 센서 시스템의 개발은 로봇이 임무를 수행하는 데 있어 중요하다. 3차원 센서 시스템을 통한 원격 탐사는 2차원 카메라를 이용한 원격탐사와는 달리 거리 값을 시각화활 수 있기 때문에 로봇의 모델을 추가하여 시뮬레이션을 할 수 있으며, 더욱 정밀한 임무를 수행할 수 있다. 3차원 공간정보를 획득하기 위해서 Sick社의 LMS111과 같은 레이저 스캐너 또는 Microsoft社의 KINECT와 같은 깊이 감지 센서를 이용할 수 있지만, KINECT와 같은 센서는 실외에서 사용할 수 없으므로 본 논문에서는 2차원 LRF(Laser Range Finder)를 이용하여 실외에 대한 최대 30m 거리의 3차원 공간 정보를 획득하였다. 원격로봇에 장착된 LRF와 KINECT로부터 획득한 3차원 공간 정보는 UDP통신을 통하여 원격작업지에 있는 PC로 전송이 되며, 이러한 공간정보를 사용하여 원격탐사를 수행한다. 본 논문에서는 로봇을 이용한 원격 탐사를 위하여 LRF와 KINECT센서를 이용한 3차원 센서 시스템 개발 방법을 제안한다.

      • KCI등재

        티타늄 산화물과 유화물의 전지 전압을 결정하는 요소에 대한 제일원리계산

        김희진(H. J. Kim),문원진(W. J. Moon),김영민(Y. M. Kim),배경서(K. S. Bae),윤재식(J. S. Yoon),이영미(Y. M. Lee),국진선(J. S. Gook),김양수(Y. S. Kim) 한국표면공학회 2009 한국표면공학회지 Vol.42 No.1

        Electronic structures and chemical bonding of Li-intercalated LiTiS2 and LiTiO₂ were investigated by using discrete variational Xα method as a first-principles molecular-orbital method. α-NaFeO₂ structure is the equilibrium structure for LiCoO₂, which is widely used as a commercial cathode material for lithium secondary battery. The study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. The average voltage of lithium intercalation was calculated using pseudopotential method and the average intercalation voltage of LiTiO₂ was higher than that of LiTiS2. It can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anions in LiTiO₂ as well as LiTiS₂. The Mulliken charge, which means the ionicity of Li atom, was approximately 0.12 in LiTiS₂ and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. One the other hands, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized. The BOP, the covalency between Ti and O, was 0.181 in LiTiO₂. Because of high ionicity of Li and the weak covalency between Ti and the nearest anion, LiTiO₂ has a higher intercalation voltage than that of LiTiS₂.

      • KCI등재

        MCFC 양극측에서 Al-Cr피복 스테인레스강 분리판의 내식성평가

        이민호,윤재식,배인성,윤동주,김병일,박형호,Lee, M.H.,Yoon, J.S.,Bae, I.S.,Yoon, D.J.,Kim, B.I.,Park, H.H. 한국재료학회 2003 한국재료학회지 Vol.13 No.2

        In order to evaluate the corrosion resistance at the anode side separator for molten carbonate fuel cell, STS316 and SACC-STS316 (chromium and aluminum were simultaneously deposited by diffusion into STS316 authentic stainless steel substrate by pack-cementation process) were applied as the separator material. In case of STS316, corrosion proceeded via three steps ; a formation step of corrosion product until stable corrosion product, a protection step against corrosion until breakaway occurs, a advance step of corrosion after breakaway. Especially, STS316 would be impossible to use the separator without suitable surface modification because of rapid corrosion rate after formation of corrosion product, occurs the severe problem on stability of cell during long-time operation. Whereas, SACC-STS316 was showed more effective corrosion resistance than the present separator, STS316 due to the intermetallic compound layer such as NiAl, Ni3Al formed on the surface of STS316 specimen. And it is anticipated that, in order to use SACC-STS316 alternative separator at the anode side, coating process, which can lead to dense coating layer, has to be developed, and by suitable pre-treatment before using it, very effective corrosion resistance will be achieved.

      • KCI등재

        용융탄산염 연료전지용 스테인리스강 분리판의 부식거동

        박형호,윤재식,배인성,김병일 대한금속재료학회 2003 대한금속·재료학회지 Vol.41 No.12

        In order to investigate the corrosion resistance at the anode side separator for molten carbonate fuel cell, STS310S and SC-STS310S (chromium and aluminum were simultaneously deposited by diffusion into STS310S austenitic stainless steel substrate by pack-cementation process) were used as the separator material. In case of STS310S, corrosion proceeded via three steps; a formation step of corrosion product, a protection step against corrosion, an advance step of corrosion after breakaway. From the standpoint of the behavior of the elements in the specimen, Fe, Cr and Ni were formed richly in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone respectively. Especially, STS310S would be impossible to be used as a separator without suitable surface modification because of rapid corrosion rate after formation of corrosion product, making the severe problem on stability of cell during long-time operation. Whereas, SC-STS310S showed higher corrosion resistance than the present separator, STS310S. And SC-STS 310S can be expected to use for an alternative separator at the anode side by developing coating and pre-treatment process which can lead to dense coating layer and very high corrosion resistance respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼