RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        레이져 식각된 상대전극이 채용된 염료감응태양전지

        노윤영 ( Yun Young Noh ),유기천 ( Ki Cheon Yoo ),고민재 ( Min Jae Ko ),송오성 ( Oh Sung Song ) 대한금속재료학회(구 대한금속학회) 2013 대한금속·재료학회지 Vol.51 No.3

        In order to enhance the energy conversion efficiency by increasing the surface area of the counter electrode (CE), we employed different substrates with the flat glass, FTO (fluorine-doped tin oxide), and laser patterned FTO. Ruthenium (Ru) films with thicknesses of 34 and 46 nm were deposited by atomic layer deposition (ALD) on each substrate. In this way, the dye sensitized solar cell (DSSC) device with an area of 0.45 cm2 with a glass/FTO/blocking layer/TiO2/N719(dye)/electrolyte/Ru/substrate structure was prepared. The microstructure of the CE was investigated with FE-SEM, and the photovoltaic properties were characterized by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) measurement. When we assumed the surface morphology as the array of a pyramid (width 0.24, length 0.24, and height 0.14 μm), we determined the surface area of the substrate of the flat glass, FTO, and laser patterned FTO as 1.36×108, 2.32×108, and 2.56×108 μm2, respectively. CV and impedance results revealed an increase in catalytic activity and a decrease in interface resistance with increasing Ru thickness and surface area. When the Ru thickness was 34 nm (and 46 nm), the energy conversion efficiency of each substrate was 1.55% (1.96%), 2.62% (2.92%), and 2.95% (3.32%), respectively. These results suggest that increasing the Ru catalytic layer thickness and surface area of the CE contributed to increasing the efficiency. Moreover, increasing of surface area through laser patterning was more suitable for increasing the efficiency than the conventional flat glass, and FTO substrates.

      • KCI등재

        투명전도층이 없는 염료감응형 태양전지의 Ru 상대전극 연구

        노윤영 ( Yun Young Noh ),유기천 ( Ki Cheon Yoo ),유병관 ( Byung Kwan Yu ),한정조 ( Jeung Jo Han ),고민재 ( Min Jae Ko ),송오성 ( Oh Sung Song ) 대한금속재료학회 ( 구 대한금속학회 ) 2012 대한금속·재료학회지 Vol.50 No.2

        A TCO-less ruthenium (Ru) catalytic layer on glass substrate instead of conventional Ru/TCO/glass substrate was assessed as counter electrode (CE) material in dye sensitized solar cells (DSSCs) by examining the effect of the Ru thickness on the DSSC performance. Ru films with different thicknesses (34, 46, 69, and 90 nm) were deposited by atomic layer deposition (ALD) on glass substrates to replace both existing catalyst and electrode layer. In order to make our comparison, we also prepared an Ru catalytic layer by a similar method on FTO/glass substrate. Finally, we prepared the 0.45 cm2 DSSC device the properties of the DSSCs were examined by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) method. CV measurementsrevealed an increase in catalytic activity with increasing film thickness. The charge transfer resistance at the interface between the electrolyte and Rudecreased with increasing Ru thickness. I-V resultsshowed that the energy conversion efficiency increased up to 1.96%. Our results imply that TCO-less Ru/glass might perform as both catalyst and electrode layer when it is used in counter electrodes in DSSCs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼