RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        수요 특성이 계층적 수요예측법의 퍼포먼스에 미치는 영향

        문성민(Seongmin Moon) 한국경영과학회 2012 經營 科學 Vol.29 No.1

        The demand for naval spare parts is intermittent and erratic. This feature, referred to as non-normal demand, makes forecasting difficult. Hierarchical forecasting using an aggregated time series can be more reliable to predict non-normal demand than direct forecasting. In practice the performance of hierarchical forecasting is not always superior to direct forecasting. The relative performance of the alternative forecasting methods depends on the demand features. This paper analyses the influence of the demand features on the performance of the alternative forecasting methods that use hierarchical and direct forecasting. Among various demand features variability, kurtosis, skewness and equipment groups are shown to significantly influence on the performance of the alternative forecasting methods.

      • KCI등재

        고주파 벤딩을 통한 케이블 파이프의 변형에 관한 연구

        주이환(Yi-Hwan Joo),진진(Zhen Qin),문성민(Seongmin Moon),류성기(Sung-Ki Lyu) 한국기계가공학회 2020 한국기계가공학회지 Vol.19 No.4

        Induction bending via high-frequency heating is widely used for manufacturing pipe and section steel bends. It allows productivity improvement, unit cost reduction, delivery time compliance, and good mechanical properties. The recent increase in high-end vessels and offshore plants has raised the demand for high-frequency bending, which should improve the product quality and reduce the costs by simplifying the fabrication process; therefore, the characteristics and performance of this technique must be studied and proper design technology is required. During hot pipe bending via induction heating, the outward wall thickness of the pipe is thinned due to tensile stress and this thickness reduction cannot exceed 12.5%. This study focused on pipe bends with a bending curvature of 5D and their optimization design; in particular, the conditions that can both improve the productivity of the high-frequency bending process and keep the maximum thickness reduction below 12.5% were determined.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼