RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 한국철도에서의 계획단계 동력차 스케줄링 최적화 및 전문가 지원시스템의 프로토타입 프로그램 개발에 관한 연구

        문대섭(D.S. Moon),김동오(D.O. Kim) 한국철도학회 1999 한국철도학회 학술발표대회논문집 Vol.- No.-

        As of July 1999, 1,185 lomocotives(excluding metropolitan area electric locomotives) are in Korean National Railroad(KNR). With this limited number of resources assigning locomotives to each trains of timetable is very important in the entire railway management point of view because schedule can be regarded as goods in transportation industry. On a simple rail network, it is rather easier to assign proper locomotives to trains with the experience of operating experts and get optimal assignment solution. However, as the network is getting bigger and complicated, the number of trains and corresponding locomotives will be dramatically increased to cover all the demands required to service all of the trains in timetable. There will be also numerous operational constraints to be considered. Assigning proper locomotives to trains and building optimal cyclic rotations of locomotive routings will result in increasing efficiency of schedule and giving a guarantee of more profit. The purpose of this study is two fold: (1) we consider a planning-level locomotive scheduling problem with the objective of minimizing the wasting cost under various practical constraints and (2) development of implementation prototype program of its assigning result. Not like other countries, i.e. Canada, Sweden, Korean railroad operates on a daily schedule basis. The objective is to find optimal assignment of locomotives of different types to each trains, which minimize the wasting cost. This problem is defined on a planning stage and therefore, does not consider operational constraints such as maintenance and emergency cases. Due to the large scale of the problem size and complexity, we approach with heuristic methods and column generation to find optimal solution. The locomotive scheduling prototype consists of several modules including database, optimization engine and diagram generator. The optimization engine solves MIP model and provides an optimal locomotive schedule using specified optimization algorithms. A cyclic locomotive route diagram can be generated using this optimal schedule through the diagram generator.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼