RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Energy-Aware QoS Provisioning forWireless Sensor Networks: Analysis and Protocol

        무하마드마흐법알람,Md. Abdur Razzaque,Md. Mamun-Or-Rashid,홍충선 한국통신학회 2009 Journal of communications and networks Vol.11 No.4

        Wireless sensor networks (WSNs) are envisioned to facilitate information gathering for various applications and depending on the application types they may require certain quality of service (QoS) guarantee for successful and guaranteed event perception. Therefore, QoS in WSNs is an important issue and two most important parameters that hinder the goal of guaranteed event perception are time-sensitive and reliable delivery of gathered information, while a minimum energy consumption is desired. In this paper, we propose an energy-aware, multi-constrained and multipathQoS provisioning mechanism forWSNs based on optimization approach. Hence, a detailed analytical analysis of reliability, delay and energy consumption is presented to formulate the optimization problem in an analytical way. A greedy algorithm is proposed to achieve the desired QoS guarantee while keeping the energy consumption minimum. Also, a simple but efficient retransmission mechanism is proposed to enhance the reliability further, while keeping the delay within delay bound. Simulation results demonstrate the effectiveness of our scheme.

      • KCI등재

        eMCCA: An Enhanced Mesh Coordinated Channel Access Mechanism for IEEE 802.11s Wireless Mesh Networks

        Md. Shariful Islam,무하마드마흐법알람,홍충선,이성원 한국통신학회 2011 Journal of communications and networks Vol.13 No.6

        In this paper, we present a channel access mechanism,referred to as the enhanced mesh coordinated channel access (eMCCA)mechanism, for IEEE 802.11s-based wireless mesh networks. The current draft of IEEE 802.11s includes an optional medium access control (MAC), denoted as MCCA, which is designed to provide collision-free and guaranteed channel access during reserved periods. However, the MCCA mechanism fails to achieve the desired goal in the presence of contending non-MCCA nodes; this is because non-MCCA nodes are not aware of MCCA reservations and have equal access opportunities during reserved periods. We first present a probabilistic analysis that reveals the extent to which the performance of MCCA may be affected by contending non-MCCA nodes. We then propose eMCCA, which allows MCCA-enabled nodes to enjoy collision-free and guaranteed channel access during reserved periods by means of prioritized and preemptive access mechanisms. Finally, we evaluate the performance of eMCCA through extensive simulations under different network scenarios. The simulation results indicate that eMCCA outperforms other mechanisms in terms of success rate, network throughput, end-to-end delay, packet-loss rate, and mesh coordinated channel access opportunity-utilization.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼