RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Generic Training Set based Multimanifold Discriminant Learning for Single Sample Face Recognition

        ( Xiwei Dong ),( Fei Wu ),( Xiao-Yuan Jing ) 한국인터넷정보학회 2018 KSII Transactions on Internet and Information Syst Vol.12 No.1

        Face recognition (FR) with a single sample per person (SSPP) is common in real-world face recognition applications. In this scenario, it is hard to predict intra-class variations of query samples by gallery samples due to the lack of sufficient training samples. Inspired by the fact that similar faces have similar intra-class variations, we propose a virtual sample generating algorithm called k nearest neighbors based virtual sample generating (kNNVSG) to enrich intra-class variation information for training samples. Furthermore, in order to use the intra-class variation information of the virtual samples generated by kNNVSG algorithm, we propose image set based multimanifold discriminant learning (ISMMDL) algorithm. For ISMMDL algorithm, it learns a projection matrix for each manifold modeled by the local patches of the images of each class, which aims to minimize the margins of intra-manifold and maximize the margins of inter-manifold simultaneously in low-dimensional feature space. Finally, by comprehensively using kNNVSG and ISMMDL algorithms, we propose k nearest neighbor virtual image set based multimanifold discriminant learning (kNNMMDL) approach for single sample face recognition (SSFR) tasks. Experimental results on AR, Multi-PIE and LFW face datasets demonstrate that our approach has promising abilities for SSFR with expression, illumination and disguise variations.

      • SCIESCOPUSKCI등재

        Production of ρ-Hydroxyacetophenone by Engineered Escherichia coli Heterologously Expressing 1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase

        ( Wenmei Wu ),( Xiwei Yuan ),( Xin Gao ),( Chaoyang Tan ),( Shunxiang Li ),( Dehong Xu ) 한국미생물생명공학회 2024 Journal of microbiology and biotechnology Vol.34 No.2

        ρ-Hydroxyacetophenone is an important and versatile compound that has been widely used in medicine, cosmetics, new materials, and other fields. At present, there are two ways to obtain ρ-hydroxyacetophenone. One is to extract it from plants, such as Artemisia capillaris Thunb and Cynanchum otophyllum Schneid, and the other is to synthesize it by using chemical methods. Of these two methods, the second is the main one, although it has problems, such as flammable and explosive reagents, difficult separation of by-products, and harsh reaction conditions. To solve these issues, we adopted genetic engineering in this study to construct engineered Escherichia coli containing Hped gene or EbA309 gene. Whole-cell biotransformation was conducted under the same conditions to select the engineered E. coli with the higher activity. Orthogonal tests were conducted to determine the optimal biotransformation condition of the engineered E. coli. The results showed that the optimal condition was as follows: substrate concentration of 40 mmol/l, IPTG concentration of 0.1 mmol/l, an induction temperature of 25℃, and a transformation temperature of 35℃. Under this condition, the effects of transformation time on the ρ-hydroxyacetophenone concentration and cell growth were further studied. We found that as the transformation time extended, the ρ-hydroxyacetophenone concentration showed a gradually increasing trend. However, when the ρ-hydroxyacetophenone concentration increased to 1583.19 ± 44.34 mg/l in 24 h, cell growth was inhibited and then entered a plateau. In this research, we realized the synthesis of ρ-hydroxyacetophenone by biotransformation, and our findings lay a preliminary foundation for further improving and developing this method.

      • KCI등재

        Preparation of Non-Planar-Ring Epoxy Thermosets Combining Ultra-Strong Shape Memory Effects and High Performance

        Qiong Li,Songqi Ma,Jingjing Wei,Sheng Wang,Xiwei Xu,Kaifeng Huang,Binbo Wang,Wangchao Yuan,Jin Zhu 한국고분자학회 2020 Macromolecular Research Vol.28 No.5

        Non-planar-ring epoxies together with non-planar-ring hardeners could achieve thermosets combining ultra-high shape recovery speed and excellent thermal properties. High shape recovery speed reflected high efficiency, and could decrease the energy consumption and the harmful effect of external stimuli on the materials, while it often conflicts with the thermal properties of shape memory polymers. In this paper, for the first time, epoxy resins with the super-short shape recovery time within 3 s were developed from non-planar-ring epoxies and hardeners, and their glass transition temperature (T g) were ~127 °C much higher than their benzene ring analogues. The effects of non-planar-ring structures of the epoxies and hardeners on the curing behavior, thermal properties as well as the shape memory properties of the thermosets were systematically investigated; the structure-property relationships were disclosed with the help of computational simulation of structure parameters and ESP maps. The faster shape recovery speed of the non-planar-ring epoxy thermosets is from their higher molecular mobility contributed by the conformational transition of non-planar-rings as well as their higher recovery force compared with benzene ring analogs. Their higher T gs are from the steric hindrance by the larger molecular volume of the non-planar-rings than benzene ring. This work will provide an effective method to produce shape memory polymers with excellent shape memory effects and high performance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼