RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Proteome Changes in Penicillium expansum Grown in a Medium Derived from Host Plant

        ( Xiaoshuang Xia ),( Huan Li ),( Fei Liu ),( Ye Zhang ),( Qi Zhang ),( Yun Wang ),( Peiwu Li ) 한국미생물 · 생명공학회 2017 Journal of microbiology and biotechnology Vol.27 No.3

        Penicillium expansum causes blue mold rot, a prevalent postharvest disease of pome fruit, and is also the main producer of the patulin. However, knowledge on the molecular mechanisms involved in this pathogen-host interaction remains largely unknown. In this work, a twodimensional gel electrophoresis-based proteomic approach was applied to probe changes in P. expansum 3.3703 cultivated in apple juice medium, which was used to mimic the in planta condition. The results showed that the pH value and reducing sugar content in the apple juice medium decreased whereas the patulin content increased with the growing of P. expansum. A total of 28 protein spots that were up-regulated in P. expansum when grown in apple juice medium were identified. Functional categorization revealed that the identified proteins were mainly related to carbohydrate metabolism, secondary metabolism, protein biosynthesis or degradation, and redox homeostasis. Remarkably, several induced proteins, including glucose dehydrogenase, galactose oxidase, and FAD-binding monooxygenase, which might be responsible for the observed medium acidification and patulin production, were also detected. Overall, the experimental results provide a comprehensive interpretation of the physiological and proteomic responses of P. expansum to the host plant environment, and future functional characterization of the identified proteins will deepen our understanding of fungi-host interactions.

      • KCI등재

        Trichloroethylene injures rat liver and elevates the level of peroxisomal bifunctional enzyme (Ehhadh)

        Nuanyuan Luo,Qunqun Chang,Xiaohu Ren,Peiwu Huang,Wei Liu,Li Zhou,Yungang Liu,Jianjun Liu 대한독성 유전단백체 학회 2020 Molecular & cellular toxicology Vol.16 No.3

        Background Trichloroethylene (TCE) is a common industrial solvent and an occupational toxicant. TCE exposure can cause severe hepatotoxicity, but its mode of action is poorly understood. Many studies have shown TCE-induced liver damage in mice, while few have examined the effects of TCE in rats. Objective To explore the effects of TCE in Sprague–Dawley (SD) rats and the potential mechanisms in TCE-induced hepatocytotoxicity. Results The liver index and activities of liver damage marker enzymes (ALT, AST and ALP) in rat serum were elevated along with the increase in TCE dose, while the levels of total proteins and albumin in serum were reduced. The results suggest that TCE is hepatotoxic in rats. 2D-DIGE electrophoresis showed that the levels of 66 liver proteins in TCE-treated rats were abnormally altered (39 up-regulated and 27 down-regulated). In these proteins, six enzymes were related to liver damage and carcinogenesis as indicated by bioinformatics analysis, and Western blot analysis confirmed the alterations of three of them, i.e., aldehyde dehydrogenase 2 (Aldh2), glutathione S-transferase Mu 1 (Gstm1) and peroxisomal bifunctional enzyme (PBE, also named as Ehhadh). PBE was the only protein elevated in a dose dependent manner. Whether PBE can be a biomarker of TCE hepatotoxicity needs to be further studied. Conclusion These findings indicate that TCE induces liver injury in rats.

      • KCI등재

        MicroRNA-200a Targets Cannabinoid Receptor 1 and Serotonin Transporter to Increase Visceral Hyperalgesia in Diarrhea-predominant Irritable Bowel Syndrome Rats

        ( Qiuke Hou ),( Yongquan Huang ),( Changrong Zhang ),( Shuilian Zhu ),( Peiwu Li ),( Xinlin Chen ),( Zhengkun Hou ),( Fengbin Liu ) 대한소화기기능성질환·운동학회(구 대한소화관운동학회) 2018 Journal of Neurogastroenterology and Motility (JNM Vol.24 No.4

        Background/Aims MicroRNAs (miRNAs) were reported to be responsible for intestinal permeability in diarrhea-predominant irritable bowel syndrome (IBS-D) rats in our previous study. However, whether and how miRNAs regulate visceral hypersensitivity in IBS-D remains largely unknown. Methods We established the IBS-D rat model and evaluated it using the nociceptive visceral hypersensitivity test, myeloperoxidase activity assay, restraint stress-induced defecation, and electromyographic (EMG) activity. The distal colon was subjected to miRNA microarray analysis followed by isolation and culture of colonic epithelial cells (CECs). Bioinformatic analysis and further experiments, including dual luciferase assays, quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay, were used to detect the expression of miRNAs and how it regulates visceral hypersensitivity in IBS-D rats. Results The IBS-D rat model was successfully established. A total of 24 miRNAs were differentially expressed in the distal colon of IBS-D rats; 9 were upregulated and 15 were downregulated. Among them, the most significant upregulation was miR-200a, accompanied by downregulation of cannabinoid receptor 1 (CNR1) and serotonin transporter (SERT). MiR-200a mimic markedly inhibited the expression of CNR1/SERT. Bioinformatic analysis and luciferase assay confirmed that CNR1/SERT are direct targets of miR-200a. Rescue experiments that overexpressed CNR1/SERT significantly abolished the inhibitory effect of miR-200a on the IBS-D rats CECs. Conclusions This study suggests that miR-200a could induce visceral hyperalgesia by targeting the downregulation of CNR1 and SERT, aggravating or leading to the development and progression of IBS-D. MiR-200a may be a regulator of visceral hypersensitivity, which provides potential targets for the treatment of IBS-D. (J Neurogastroenterol Motil 2018;24:656-668)

      • KCI등재

        Lactobacillus casei LC01 Regulates Intestinal Epithelial Permeability through miR-144 Targeting of OCLN and ZO1

        ( Qiuke Hou ),( Yongquan Huang ),( Yan Wang ),( Liu Liao ),( Zhaoyang Zhu ),( Wenjie Zhang ),( Yongshang Liu ),( Peiwu Li ),( Xinlin Chen ),( Fengbin Liu ) 한국미생물 · 생명공학회 2020 Journal of microbiology and biotechnology Vol.30 No.10

        Our previous report determined that miR-144 is a key regulator of intestinal epithelial permeability in irritable bowel syndrome with diarrhea (IBS-D) rats. Recent evidence has shown that lactobacilli play an important role in the relief of IBS-D symptoms. However, few studies have addressed the mechanisms by which microRNAs and lactobacilli exert their beneficial effects on intestinal epithelial permeability. Hence, to elucidate whether miRNAs and lactobacilli play roles in intestinal epithelial barrier regulation, we compared miRNA expression levels in intestinal epithelial cells (IECs) under Lactobacillus casei (L. casei LC01) treatment. IECs and L. casei LC01 were co-cultured and then subjected to microRNA microarray assay. qRT-PCR, western blot and ELISA were used to detect the expression of occludin (OCLN) and zonula occludens 1 (ZO1/TJP1). The interaction between miRNAs and L. casei LC01 acting in IECs was investigated through transfection of RNA oligoribonucleotides and pcDNA 3.1 plasmid. The results are as follows: 1) L. casei LC01 decreased the expression of miR-144 and FD4 and promoted OCLN and ZO1 expression in IECs; 2) L. casei LC01 enhanced the barrier function of IECs via downregulation of miR-144 and upregulation of OCLN and ZO1; 3) Under L. casei LC01 treatment, OCLN and ZO1 overexpression could partially eliminate the promoting effect of miR-144 on intestinal permeability in IECs. Our results demonstrate that L. casei LC01 regulates intestinal permeability of IECs through miR-144 targeting of OCLN and ZO1. L. casei LC01 can be a possible therapeutic target for managing dysfunction of the intestinal epithelial barrier.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼