RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental and theoretical analysis of element mercury adsorption on Fe3O4/Ag composites

        Lu Dong,Jiangkun Xie,Guangping Fan,Yaji Huang,Jun Zhou,Qingke Sun,LiangWang,Zhengwen Guan,Di Jiang,Ye Wang 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.11

        A novel magnetic nano-sorbent Fe3O4/Ag was synthesized and applied to capture the elemental mercury from the simulated flue gas. The morphology, components and crystal phase of the sorbents were characterized by transmission electron microscope (TEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), respectively. The mercury removal performance of the sorbents was investigated through the fixed-bed tests. The results indicated that silver was successfully loaded on the surface of Fe3O4 particles, which could significantly enhance the Hg0 removal performance of the sorbents. Flue gas components, including CO2, SO2, and NO, have little impact on the Hg0 removal performance of Fe3O4/Ag sorbents, while O2 has a slightly positive effect. The Hg0 removal efficiency decreased with the increasing of temperature, Hg0 inlet concentration and gas hourly space velocity. Only one broad mercury desorption peak at approximately 210 oC could be observed during the temperature-programmed desorption (TPD) process, which indicated that mercury species existing on the surface of Fe3O4/Ag sorbents might be elemental mercury instead of oxidized mercury. Furthermore, the reusability tests showed that the Fe3O4/Ag sorbents could be efficiently regenerated and reused. Finally, the theoretical analysis based on the DFT method showed that a weak chemisorption of Hg0 on Fe3O4 sorbents changed to a strong chemisorption when silver was loaded. The results of theoretical analysis conformed to the experiments results well.

      • KCI등재

        Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

        ( Junru Wang ),( Juyuan Xing ),( Jiangkun Lu ),( Yingjiao Sun ),( Juanjuan Zhao ),( Shaohua Miao ),( Qin Xiong ),( Yonggang Zhang ),( Guishan Zhang ) 한국미생물생명공학회(구 한국산업미생물학회) 2019 Journal of microbiology and biotechnology Vol.29 No.5

        Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼