RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Image quality assessment of pre-processed and post-processed digital panoramic radiographs in paediatric patients with mixed dentition

        Isti Rahayu Suryani,Natalia Salvo Villegas,Sohaib Shujaat,Annelore De Grauwe,Azhari Azhari,Suhardjo Sitam,Reinhilde Jacobs 대한영상치의학회 2018 Imaging Science in Dentistry Vol.48 No.4

        Purpose: To determine the impact of an image processing technique on diagnostic accuracy of digital panoramic radiographs for the assessment of anatomical structures in paediatric patients with mixed dentition. Materials and Methods: The study consisted of 50 digital panoramic radiographs of children aged from 6 to 12 years, which were later on processed using a dedicated image processing method. A modified clinical image quality evaluation chart was used to evaluate the diagnostic accuracy of anatomical structures in maxillary and mandibular anterior and maxillary premolar region of processed images. Results: A statistically significant difference was observed between pre and post-processed evaluation of anatomical structures (P<0.05) in the maxillary and mandibular anterior region. The anterior region was found to be more accurate in post-processed images. No significant difference was observed in the maxillary premolar region (P>0.05). The Inter-observer and intra-observer reliability of both pre and post processed images were excellent (>0.82) for anterior region and good (>0.63) for premolar region. Conclusion: The application of image processing technique in digital panoramic radiography can be considered a reliable method for improving the quality of anatomical structures in paediatric patients with mixed dentition.

      • SCOPUSKCI등재

        Improvement of Fast-Growing Wood Species Characteristics by MEG and Nano SiO<sub>2</sub> Impregnation

        ( Fitria Cita Dirna ),( Istie Rahayu ),( Lukmanul Hakim Zaini ),( Wayan Darmawan ),( Esti Prihatini ) 한국목재공학회 2020 목재공학 Vol.48 No.1

        Jabon (Anthocephalus cadamba) is a fast-growing wood species that is widely utilized for light construction and other purposes in Indonesia. The objectives of the current study were to determine the effects of monoethylene glycol (MEG) and SiO<sub>2</sub> nanoparticles (nano SiO<sub>2</sub>) impregnation treatment on the dimensional stability and density of jabon wood and to identify the characteristics of impregnated jabon wood. Wood samples were immersed in water (as untreated), MEG, 0.5% MEGSiO<sub>2</sub>, then impregnated by applying 0.5 bar of vacuum for 60 min, and then applying 2.5 bar of pressure for 120 min. The results showed that impregnation with MEG and Nano SiO<sub>2</sub> had a significant effect on the dimensional stability of jabon wood. Polymers can fill cell walls in wood indicated by increasing weight percentgain, antiswelling efficiency, bulking effect, and density, then decreasing in water uptake value. Jabon wood morphology by using SEM showed that MEG SiO<sub>2</sub> polymers can cover part of the pitsin the wood vessel wall of jabon. This finding was reinforced by EDX results showing that the silicon content was increased due to the addition of SiO<sub>2</sub> nano. The XRD diffraction pattern indicated that MEG SiO<sub>2</sub> treatment increased the degree of crystallinity in wood samples. Overall, treatment with 0.5% MEG SiO<sub>2</sub> led to the most improvement in the dimensional stability of 5-year-old jabon wood in this study.

      • KCI등재

        Characteristics of Magnetic Sengon Wood Impregnated with Nano Fe3O4 and Furfuryl Alcohol

        Gilang Dwi LAKSONO,Istie Sekartining RAHAYU,Lina KARLINASARI,Wayan Darmawan,Esti PRIHATINI 한국목재공학회 2023 목재공학 Vol.51 No.1

        Sengon (Falcataria moluccana Miq.) tree offers a wood of low quality and durability owing to its low density and thin cell walls. This study aimed to improve the properties of sengon wood by making the wood magnetic, producing new functions, and characterizing magnetic sengon wood. Each wood sample was treated using one of the following impregnation solutions: Untreated, 7.5% nano magnetite-furfuryl alcohol (Fe3O4-FA), 10% nano Fe3O4-FA, and 12.5% nano Fe3O4-FA. The impregnation process began with vacuum treatment at 0.5 bar for 2 h, followed by applying a pressure of 1 bar for 2 h. The samples were then tested for dimensional stability and density and characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM–EDX), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) analysis, and vibrating sample magnetometry (VSM) analysis. The results showed that the Fe3O4-FA impregnation treatment considerable affected the dimensional stability, measured in terms of weight percent gain, anti-swelling efficiency, water uptake, and bulking effect, as well as the density of sengon wood. Changes in wood morphology were detected by the presence of Fe deposits in the cell walls and cell cavities of the wood using SEM–EDX analysis. XRD and FTIR analyses showed the appearance of magnetite peaks in the diffractogram and Fe-O functional groups. Based on the VSM analysis, treated sengon wood is classified as a superparamagnetic material with soft magnetic properties. Overall, 10% Fe3O4-FA treatment led to the highest increase in dimensional stability and density of sengon wood.

      • KCI등재

        Investigating the Anatomical and Physical-Mechanical Properties of the 8-Year-Old Superior Teakwood Planted in Muna Island, Indonesia

        ( Alvin Muhammad Savero ),( Imam Wahyudi ),( Istie Sekartining Rahayu ),( Andi Detti Yunianti ),( Futoshi Ishiguri ) 한국목재공학회 2020 목재공학 Vol.48 No.5

        Muna teakwood, especially from old stands, has been popular as raw material for timber industries in Indonesia for the past ten decades. Due to the scarcity of this wood, superior-grown seedlings of Muna teakwood have been developed and widely planted. Since there is no information on its characteristics, therefore, the aim of this research was to investigate wood characteristics of the 8-year-old superior-grown teak from Muna Island to ensure their proper utilization as raw material for wooden furniture. Wood discs and boards from basal area of three different trees were used as the samples. Macroscopic and microscopic anatomical characteristics were observed following the IAWA's list, while their physicalmechanical properties were measured following British Standard 373-57. Results showed that anatomical characteristics of this wood sample are similar to regular teakwood, but its heartwood portion is higher. Differences among trees are found in regards to wood texture, growth ring width, as well as early and latewood portion. The green moisture content was lower than that of fast-growing teak of a similar age. The wood is more stable than the old teakwood, but its specific gravity is lower. In general, mechanical properties of this wood were higher than those of the regular fast-growing teakwood, but lower than the old one. Based on its specific gravity, this superior Muna teakwood was categorized as a Strength Class of III. The wood is suitable enough for wooden furniture manufacturing.

      • SCOPUSKCI등재

        Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification

        ( Deded Sarip Nawawi ),( Andita Maria ),( Rizal Danang Firdaus ),( Istie Sekartining Rahayu ),( Adesna Fatrawana ),( Fadlan Pramatana ),( Pamona Silvia Sinaga ),( Widya Fatriasari ) 한국목재공학회 2023 목재공학 Vol.51 No.2

        Densification is an effective method for improving the physical and mechanical properties of low-density wood. However, the set-recovery of dimensions was found to be the problem of densified wood due to low fixation during the densification process. Alkali pretreatment before densification is thought to be a modification process to improve the dimensional stability of densified wood. In this research, the wood samples used were boiled in a 1.25 N sodium hydroxide (NaOH) solution at different times, followed by densification for 5 h at 100℃. The alkali pretreatment for 1, 3, and 5 h of boiling increased the dimensional stability of densified woods and anti-swelling efficiency values were 8.52%, 63.24%, and 48.94%, respectively. The boiling of wood in NaOH solution decreased the holocellulose content, as well as lignin to a lesser degree, and a lower crystallinity index was observed. The lower hydroxyl groups and a higher proportion of lignin in treated samples seem to have contributed to the high dimensional stability detected.

      • KCI등재

        Radial Variation in Selected Wood Properties of Indonesian Merkusii Pine

        ( Wayan Darmawan ),( Dodi Nandika ),( Britty Datin Hasna Afaf ),( Istie Rahayu ),( Dumasari Lumongga ) 한국목재공학회 2018 목재공학 Vol.46 No.4

        Merkusii pine wood (Pinus merkusii) was extensively planted throughout Indonesia, where it is only indigenous in northern Sumatera, by the Dutch during colonial times. The demand for this wood species, especially in the domestic market, has increased notably, despite its limited durability regarding decay resistance. The purpose of this study was to investigate the occurrence of juvenile and mature wood on merkusii pine and to analyze its radial features from pith to bark based on density, shrinkage, static bending in modulus of rupture and modulus of elasticity, fiber length, microfibril angle, and durability. A segmented modeling approach was used to find the juvenile-mature transition. The graveyard test was performed to characterize the termite resistance from pith to bark of merkusii pine. The maturations were estimated to start at radial increments of 15 cm from the pith by fiber length and of 12 cm from the pith by microfibril angle. The projected figures for the proportion of juvenile wood at breast height were around 65%. The results also indicate that the pine wood was 0.52 g/㎤ in density, 1.45 in coefficient of anisotropy, which indicates its good stability, 7597 MPa in modulus of elasticity, and 63 MPa in modulus of rupture. Natural durability against subterranean termite of the merkusii pine wood was rated to be grade 4 to 0 from pith to bark. However, after being treated by Entiblu and Enborer preservatives, its rating increased to grade 10 to 9.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼