RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

        Biruk Hailu Tekle,Yifei Cui,Amar Khennane 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.75 No.1

        The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers’ concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

      • KCI등재

        CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동

        박성수 ( Park Sung-soo ),조수제 ( Cho Su-je ) 한국구조물진단유지관리공학회 2003 한국구조물진단유지관리공학회 논문집 Vol.7 No.3

        본 연구의 목적은 탄소섬유쉬트(CFS)로 보강된 RC보의 보강시 상재하중의 유무에 따른 보강효과와 휨거 동을 실험적으로 고찰하는 것이다. 실험변수는 인장철근비 (0.85, 1.32, 1.91%)와 상재하중(무보강보의 항 복내력의 80%)으로 한다. 보강보의 구조적 거동을 항복하중과 극한하중, 하중-중앙부 처짐 관계, 연성, 보강 효과의 항으로 비교하였다. 실험결과로부터, CFS로 보강된 RC보의 극한 내력과 휨파괴거동이 원부재와 부착된 CFS 간의 초기응력에 의해 변화하는 것으로 나타났다. The purpose of this research are to investigate experimentally flexural strengthening effects and flexural behaviour of RC beams strengthened by carbon fiber sheet (CFS) with/without superimposed pre-load. Test parameters of experiment are tension reinforcement ratio(0.85, 1.32, 1.91%) and pre-load(80% of yield capacity of unstrengthened beams). The structural behaviour of strengthened beams are compared with in terms of yield load and ultimate load, load-deflection relation, ductility, strengthened efficiency. From the test results, it were shown that ultimate capacity and flexural failure behaviour of RC beams strengthened by CFS changed by initial stresses between original beams and bonded CFS.

      • KCI등재

        Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

        Y.B. Shao,Y.M. Wang,D.P. Yang 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.21 No.5

        When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

      • KCI등재

        Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

        Mohammed A. Al-Osta 사단법인 한국계산역학회 2019 Computers and Concrete, An International Journal Vol.24 No.1

        In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.

      • KCI등재

        굴진장을 고려한 얕은 터널파괴거동에 대한 모형실험 및 수치해석

        김영민(Kim Youngmin) 한국암반공학회 2005 터널과지하공간 Vol.15 No.6

        도사지반에서 얕은 터널을 굴착하는 경우, 터널 막장부의 파괴 메카니즘이 터널 안정성에 큰 영향을 마친다. 본 논문에서는 일련의 굴진장을 고려한 2차원 종 방향 터널 모형 실험을 수행하였다. 그 결과 얕은 터널의 파괴 메카니즘은 굴진장이 길어질수록 파괴모드 1에서 파괴모드 2로 변하는 것을 알 수 있었다. 또한, 모형실험결과와 수치해석을 비교하여 터널에 작용하는 최소 지보압과 진행성 파괴 거동에 대하여 분석하였다. During excavation of shallow tunnels in soft ground, failure mechanism around the tunnel face have major influence on the stability of tunnels. In this paper, a series of laboratory tests under plane strain condition on the small scale of a shallow tunnel considering unsupported tunnel length has been performed. The results have shown that tunnel failure mechanism changes from failure mode I to failure mode 2 as unsupported tunnel length increases. By comparing the experimental and the numerical results, the loosening pressure for the shallow tunnel and progressive failure have been investigated.

      • KCI등재후보

        수치해석방법에 의한 연약지반위의 보강띠기초의 지지력거동해석

        김영민(Kim Young-Min),강성귀(Kang Seong-Gwi) 한국토목섬유학회 2009 한국지반신소재학회 논문집 Vol.8 No.3

        지오그리드 보강재는 여러 토구조물에 널리 적용되어진다. 일반적으로 보강토 기초의 극한지지력은 강소성이론 이나 한계평형이론에 의하여 설명된다. 강소성이론 이나 한계평형이론에서는 보강재 또는 기초지반에 발생되는 파괴변형이나 변형율에 대하여 정확한 해석을 얻을 수 없다. 본 논문에서는 연약층위의 보강토 기초지반에 대하여 수치해석방법을 이용하여 자세한 파괴변형거동에 대하여 조사하였다. 보강재의 개수, 길이, 깊이 등을 포함하여 연약층위의 보강토 기초에 대하여 일련의 수치해석을 수행하였다. 유한요소프로그램을 사용하여 보강토기초에 대한 파괴거동 및 지지력의 향상효과에 대한 유효성이 조사되었다. Earth reinforcement by using geogrids as reinforcing materials are widely applied to several earth structures. The bearing capacity of geogrid reinforced foundation soils is usually examined on based on the rigid plasticity theory or Limit Equilibrium Method. Method of analysis such Limit Equilibrium Method provide no detail information about failure behaviour or strain which develop in the reinforcement or foundation. In this paper the analysis of failure behaviour of strip footing on geogrid-reinforced sand over a soft caly was investigated by using a numerical method. A series of finite element analyses were performed on a geogrid-reinforced strip footing over a soft clay including number of geogrid layers, length, depth. We effectively investigated the failure behaviour and improvement of bearing capacity on the reinforced foundation soil by using FEM program.

      • KCI등재

        축소모형실험을 이용한 공동지반에서의 터널 거동특성

        정지승(Jeeseung Chung),문인기(Innki Moon),유찬호(Chanho Yoo) 한국지반환경공학회 2013 한국지반환경공학회논문집 Vol.14 No.12

        도로 및 철도의 터널 공사가 증가함에 따라 공사 시에 다양한 지반조건에서 터널 공사 단계를 진행하고 있다. 특히, 석회암지역에서 터널 공사를 진행하게 되는 경우에는 대부분의 공동이 터널 계획구간에 존재하고 있는 실정이다. 하나 또는 그 이상의 공동은 터널의 안정성을 저하하는 것으로 예상된다. 따라서, 본 연구에서는 터널과 공동과의 상호 영향을 알아보고자 실내 모형축소실험과 수치해석을 시행하였다. 실내모형실험은 터널과 공동 간의 거리에 따른 모형지반의 파괴하중을 확인하였고, 공동의 형상에 따른 파괴하중을 확인하였다. 실내모형실험결과 파괴하중은 공동과 터널 간의 거리가 0.5D 이내로 감소함에 따라서 파괴하중 역시 감소하는 것으로 나타났다. 수치해석은 모형실험의 검증을 위해 시행하였으며, 실내모형실험과 동일하게 터널과 공동 간의 거리가 0.5D 이내로 근접하는 경우 터널의 안정성이 저하되는 것으로 확인되었다. As construction for road and train tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, the cavity is mostly to locate in tunnel planning location. One or some cavities which can be harmful for tunnel safety are predicted. Hence, this study was fulfilled to confirm the influence between tunnel and cavity using laboratory scale down model test and numerical analysis. The scale down model test was carried out to confirm the failure load of the model ground about the interval length of cavity and tunnel and to analyze behaviour characteristics of the model ground on the cavity shape. From the model test result, the failure load decrease in accordance with decreasing of interval length between cavity and tunnel within 0.5D. The numerical analyses were carried out for verification about scale down model test. From the numerical analysis result, tunnel safety decreases in the case of the interval between cavity and tunnel within 0.5D.

      • KCI등재

        Structural Behaviour of an Assembled Steel Joint Composed of CHS KK-Joint and Doubler Plate for Connection with Steel Tensile Rods

        Bo Zhao,Han Zhu,Yue Yin,Zhuo Liu,Qinghua Han 한국강구조학회 2018 International Journal of Steel Structures Vol.18 No.2

        Structural behavior of an assembled steel joint composed of CHS KK-joint and a doubler plate for connection with steel tensile rods was studied. A full-scale test was conducted for the assembled joint on a special made self-balanced reaction frame with three high strength steel strands to apply tensile loads on two ear plates and compressive load on the chord member of the joint. Ultimate load carrying capacity, failure mode and stress distribution of the joint under monotonic loads were obtained experimentally. The static behavior of the joint was also determined by nonlinear fi nite element analysis. The results of numerical analysis agreed very well with those of the test, which verifi ed the rationality of the fi nite element model. The hysteretic behavior of the joint was then studied by fi nite element analysis. Hysteretic curve was obtained, based on which ductile ratio and energy dissipation factor were calculated. Outcomes from both the test and the fi nite element analysis proved that the assembled joint has satisfactory load carrying capacity and acceptable seismic performance.

      • KCI등재

        Numerical studies on behaviour of bolted ball-cylinder joint under axial force

        Xiaonong Guo,Zewei Huang,Zhe Xiong,Shangfei Yang,Li Peng 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.20 No.6

        This paper presents the results of an extensive numerical analysis program devoted to the investigation of the mechanical behaviour of bolted ball-cylinder joints. The analysis program is developed by means of finite element (FE) models implemented in the non-linear code ABAQUS. The FE models have been accurately calibrated on the basis of available experimental results. It is indicated that the FE models could be used effectively to describe the mechanical performance of bolted ball-cylinder joints, including failure modes, stress distributions and loaddisplacement curves. Therefore, the proposed FE models could be regarded as an efficient and accurate tool to investigate the mechanical behavior of bolted ball-cylinder joints. In addition, to develop a further investigation, parametric studies were performed, varying the dimensions of hollow cylinders, rectangular tubes, convex washers and ribbed stiffener. It is found that the dimensions of hollow cylinders, rectangular tubes and ribbed stiffener influenced the mechanical behaviour of bolted ball-cylinder joints significantly. On the contrary, the effects of the dimensions of convex washers were negligible.

      • Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures

        Shaikh, F.U.A.,Taweel, M. Techno-Press 2015 Advances in concrete construction Vol.3 No.4

        This paper presents the effects of elevated temperatures of $400^{\circ}C$ and $800^{\circ}C$ on the residual compressive strength and failure behaviour of fibre reinforced concretes and comparison is made with that of unreinforced control concrete. Two types of short fibres are used in this study e.g., steel and basalt fibres. The results show that the residual compressive strength capacity of steel fibre reinforced concrete is higher than unreinforced concrete at both elevated temperatures. The basalt fibre reinforced concrete, on the other hand, showed lower strength retention capacity than the control unreinforced concrete. However, the use of hybrid steel-basalt fibre reinforcement recovered the deficiency of basalt fibre reinforced concrete, but still slightly lower than the control and steel fibres reinforced concretes. The use of fibres reduces the spalling and explosive failure of steel, basalt and hybrid steel-basalt fibres reinforced concretes oppose to spalling in deeper regions of ordinary control concrete after exposure to above elevated temperatures. Microscopic observation of steel and basalt fibres surfaces after exposure to above elevated temperatures shows peeling of thin layer from steel surface at $800^{\circ}C$, whereas in the case of basalt fibre formation of Plagioclase mineral crystals on the surface are observed at elevated temperatures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼