RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Preliminary Study on the Development of Methodology for Predicting Future Geological Evolution Affecting the Long-term Safety of Disposal Site

        Soolim Jung,Doohee Jung,Ji-Min Choi,Kyung-Woo Park 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.

      • Review of the Long-term Evolution of a Biosphere for the Safety Assessment of a Deep Geological Repository

        Jongtae Jeong,Inyoung Kim,Jung-Woo Kim 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        The timescale for the post-closure safety assessment of a deep geological repository ranges from ten thousand to a million year. In such a long period of time, the biosphere inevitably undergoes changes. Therefore, the long-term evolution of a biosphere is recognized as an important issue in the post-closure safety assessment of a deep geological repository for spent fuels. In this study, we reviewed the approaches to address the long-term evolution of a biosphere. The major drivers of longterm evolution of a biosphere are the climate change and the resulting landscape development. They can affect the hydrogeological and hydrogeochemical characteristics of a biosphere, and then the radionuclide migration through the biosphere followed by the exposure doses for the critical groups. In addition, human activities and the social developments can affect the climate change resulting in the long-term evolution of a biosphere. To make a biosphere assessment, the long-term evolution scenarios for the biosphere should be formulated considering these climate change, landscape development, and human activities. In addition, features, events, and processes (FEPs) that affect the long-term evolution of a biosphere should be used. According to the Safety Case reports of Finland, the major long-term evolution scenario drivers of a biosphere are local sea-level change due to climate change and land use related to crop type, irrigation procedures, livestock, forest management, construction of a well, and demographics. The climate change causing the local sea-level change can be simulated using various earth system models such as CLIMBER-2, MPI/UW, and UVic and an icesheet model such as SICOPOLIS. The review results of this study and FEPs related to the climate change, the landscape development, and human activities will be used to formulate long-term evolution scenarios for the safety assessment of a deep geological repository for spent fuels.

      • Analysis on the Long-term Evolution Phenomena Expected in the Korean Peninsula

        In-Young Kim,Jongtae Jeong,Jung-Woo Kim 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Since it takes hundreds of thousands of years for the radiotoxicity of spent nuclear fuel to decrease to natural levels, interactions between each repository barrier, climate change, and geological evolutions are inevitable. These processes should be defined as the long-term evolution FEPs and considered in the performance assessment to ensure the long-term safety of the disposal system. The literature survey on geological characteristics and history of the Korean peninsula was conducted, and the list of A-KRS-FEPs which are directly or indirectly related to long-term evolutions was identified in this study. The ice age and geological change are the capital phenomena considered in the exceedingly long-term evolution before/after climate change. The historical data on ice sheets and permafrost were analyzed to investigate the effects of the ice ages on the Korean peninsula. The sealevel changes were investigated based on the research on the coastal terrace to identify the impact on uplift and shoreline change accompanying the ice age. Also, the survey on the geological history data was conducted from the perspective of tectonic activity, metamorphism, igneous activity, and seismic activities to consider the geodynamic evolution of the Korean peninsula. As results, it was suggested that 14 FEPs were directly related to climate change, 18 FEPs were directly related to geological evolution, and 47 FEPs were indirectly relevant to long-term geodynamics. The consent-based FEPs and scenarios for the long-term evolution will be developed shortly, including most of the critical long-term evolution phenomena defined in this study and which are highly probable in domestic disposal conditions. The evaluation and verification of the APro system for long-term safety will accomplish using these FEPs and scenarios.

      • Conceptual Understanding of the Influences by Climate Change on the Long-Term Evolution of the Surface Environment Components

        Nak-Youl Ko,Kyung-Woo Park 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        It can take hundreds of thousands of years for decreasing radiological effects of high-level radioactive wastes to those of natural background radiation. Therefore, long-term time scale should be considered in order to demonstrate performance and safety of deep geological disposal of the radioactive wastes. The changes of surface environment for these long-term time scale can have influence on safety analysis by changing transport path of radionuclides from the radioactive wastes. Changes in climate is considered as one of main factors causing the long-term changes of the surface environment. The own effects and interactions of climate with other components of the geological disposal system are organized in features, events, and processes (FEPs). In this study, some natural processes occurred by changes of climate were suggested and the connectivity between each process is proposed based on the relation of the FEPs concerned with the changes of climate and surface environment. The processes were classified into global and regional/local scales and was analyzed, respectively. Then, the influences of the processes on shallow groundwater and surface water body environment, which might be transport path of radioactive nuclides in local/site scales, were expected. As the proposed connection demonstrate the order or hierarchical relations of the natural processes, it can shows that some output by a certain process may be input of other process connected the former process in numerical simulations for interpreting the processes. If the connection may be considered to be suitable to represent longterm changes of the surface environment, it can be evaluated that the expected scenarios based on the connection is also proper. In addition, it can be helpful in selecting factors to be studied more detailed in terms of climate change for expecting long-term changes in the surface environment by analysis on the input and output data. The results of this study can be used as basic approaches to represent the long-term changes in the surface environment caused by specific natural processes from changes of climate. It will be also helpful for formulating scenarios related to long-term evolution in the surface environment required for performance and safety assessments of the deep geological disposal.

      • A Case Study of Geological Long-Term Evolution Scenario of Foreign Countries and a Preliminary Application for KURT Site

        Nak Kyu Kim,Soolim Jung,Doohee Jeong,Ji-Min Choi,Kyung-Woo Park 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.

      • Correlation Between Uplift-Subsidence & Erosion-Deposition and Long-Term Evolution in Surface Environment Presented in IFEP List

        Nak-Youl Ko,Kyung-Woo Park 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        For the performance and safety assessments of deep geological disposal, developing scenarios, which represent possible long-term changes in the surface environment, is required. These scenarios are formulated using a list of FEPs (Features, Events, and Processes) that describes characteristics of disposal system components. In this study, using international FEP (IFEP) list from OECD/NEA, the individual FEPs related to uplift-subsidence and erosion-deposition were analyzed, and the correlation between each FEP was evaluated. From the IFEP list, the elements related to uplift-subsidence and erosion-deposition processes that cause long-term changes in the surface environment were identified. Uplift-subsidence, erosion - deposition, and the long-term change factors caused by them were analyzed and a correlation diagram was produced according to their interactions. Basis for the integrated analysis of long-term changes in the surface environment and the construction of long-term change scenarios were established considering the evaluation of the factors that cause uplift-subsidence and erosiondeposition, and their correlation with the hydrology-hydrogeology, topography and local climate of the affected surface. The results of this study will be used for systematically formulating scenarios of long-term changes in the surface environment due to uplift-subsidence and erosion-deposition based on natural phenomena. And, it may be necessary to modify and supplement the correlation of domestic FEPs based on the correlation diagram of IFEPs in order to analyze long-term changes in the surface environment in an integrated manner.

      • Literature Review: A Development of Long-Term Evolution Scenarios in Biosphere Assessment

        Soobin Kim,Heejae Ju,Inyoung Kim,Minjeong Kim,Jung-Woo Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The post-closure safety assessment of a repository is typically conducted over an extensive timescale from ten thousand to a million years. Considering that biosphere ecosystems may undergo significant changes over such lengthy periods, it is essential to incorporate the long-term evolution of the biosphere into the safety assessment. Climate change and landscape development are identified as critical drivers with the potential to impact the hydrogeological and hydrogeochemical characteristics of the biosphere. These changes can subsequently alter the migration patterns of radionuclides through the biosphere and influence human exposure doses. Therefore, this study formulates scenarios within the context of long-term biosphere evolution. We examine biosphere assessment processes employed in other countries and conduct a comparative study on scenario conditions. For example, biosphere assessment in Finland has identified sea-level changes and land-use alterations as significant factors in the long-term evolution of the biosphere. These factors are linked to Features, Events, and Processes (FEPs) associated with climate change and human activities. Sea-level changes are related to FEPs regarding climate change, land uplift, and shoreline displacement, while land-use changes are based on human activity-related FEPs (e.g., crop type, livestock and forest management, well construction, and demographics). Based on the literature review, this study has configured long-term evolution scenarios for the safety assessment of a deep geological repository for spent fuels.

      • KCI등재

        Long-Term Evolution of Joint Leakage and Joint Opening for Shield Tunnel in Soft Soils Deep under Seabed

        Wenfeng Zhou,Shaoming Liao,Yanqing Men 대한토목학회 2022 KSCE Journal of Civil Engineering Vol.26 No.3

        Long-term leakage at the tunnel joint induces significant tunnel deformations, which in turn aggravates the joint leakage. A finite element model (FEM) model with a defined leakage element incorporated in a segmental joint is developed to investigate the evolution of joint leakage and deformation. Subsequently, a series of parametric analyses are conducted to reveal the time-dependent law of joint opening and leakage variation with leakage location, water head, and waterproof capacity based on Qiongzhou Strait tunnel. The results show that the interaction between joint opening and leakage undergoes a dynamic evolution process during the long-term operation of the tunnel. It is found that the joint opening on the extrados is much more critical and hazardous than that on the intrados, and the synthetic action of water head and waterproof capacity can remarkably delay the development of joint opening and leakage. For Qiongzhou Strait tunnel, the joint opening on the extrados occurs after at least 30 years of initial leakage at the springline and increases to 1.28 mm, and the leakage rate increases from 0.909 × 10−4 m3/d to 1.508 × 10−4 m3/d after 120 years. It is suggested that the waterproof capacity and initial leakages near the springline should be strictly controlled to ensure the long-term safety of the tunnel.

      • Numerical Modelling of Nuclide Transport Considering Long-Term Evolution in Far-Field of Disposal System

        Yong-Min Kim,Jung-Woo Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The safety of deep geological disposal systems has to be ensured to guarantee the isolation of radionuclides from human and related environments for over a million years. Over such a long timeframe, disposal systems can be influenced by climate change, leading to significant long-term impacts on the hydrogeological condition, including changes in temperature, precipitation and sea levels. These changes can affect groundwater flow, alter geochemical conditions, and directly/ indirectly impact the stability of the repository. Hence, it is essential to conduct a safety assessment that considers the long-term evolution induced by climate change. In this context, the Korea Atomic Energy Research Institute (KAERI) is developing the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro). Currently, numerical modules for APro are under development to account for the longterm evolution that can influence groundwater flow and radionuclide transport in the far-field of the disposal system. This study focuses on the development of two numerical modules designed to model permafrost formation and buoyance force due to relative density changes. Permafrost is defined as a ground in which temperature remains below zero-isotherm (0°C) continuously for more than two consecutive years. In regions where permafrost forms, the relative permeability of porous media is significantly reduced. The changes in permeability due to permafrost formation are modelled by calculating the unfrozen fluid content within a porous medium. Meanwhile, buoyancy force can occur when there is a difference in density at the boundary of two distinct water groups, such as seawater (salt water) and freshwater. Sea level change associated with climate change can alter the boundary between seawater and freshwater, resulting in changes in groundwater flow. The buoyancy force due to relative density is modelled by adjusting concentration boundary conditions. Using the developed numerical modules, we evaluated the long-term evolution’s effects by analyzing radionuclide transport in the far-field of the disposal system. Incorporating permafrost and buoyancy force modelling into the APro framework will contribute valuable insights into the complex interactions between geological and climatic factors, enhancing our ability to ensure the secure isolation of radionuclides for extended periods.

      • Suggestions on the Performance Demonstration Test of Backfill Materials in the Deep Geological Repository for High-Level Radioactive Waste in Korea

        Dong-Jin Kim,Seong-Su Jeon,Sukhoon Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        Properties of bentonite, mainly used as buffer and/or backfill materials, will evolve with time due to thermo-hydro-mechanical-chemical (THMC) processes, which could deteriorate the long-term integrity of the engineered barrier system. In particular, degradation of the backfill in the evolution processes makes it impossible to sufficiently perform the safety functions assigned to prevent groundwater infiltration and retard radionuclide transport. To phenomenologically understand the performance degradation to be caused by evolution, it is essential to conduct the demonstration test for backfill material under the deep geological disposal environment. Accordingly, in this paper, we suggest types of tests and items to be measured for identifying the performance evolution of backfill for the Deep Geological Repository (DGR) in Korea, based on the review results on the performance assessment methodology conducted for the operating license application in Finland. Some of insights derived from reviewing the Finnish case are as follows: 1) The THMC evolution characteristics of backfill material are mainly originated from hydro-mechanical and/or hydrochemical processes driven by the groundwater behavior. 2) These evolutions could occur immediately upon installation of backfill materials and vary depending on characteristics of backfill and groundwater. 3) Through the demonstration experiments with various scales, the hydro-mechanical evolution (e.g. advection and mechanical erosion) of the backfill due to changes in hydraulic behavior could be identified. 4) The hydro-chemical evolution (e.g. alteration and microbial activity) could be identified by analyzing the fully-saturated backfill after completing the experiment. Given the findings, it is judged that the following studies should be first conducted for the candidate backfill materials of the domestic DGR. a) Lab-scale experiment: Measurement for dry density and swelling pressure due to saturation of various backfill materials, time required to reach full saturation, and change in hydraulic conductivity with injection pressure. b) Pilot-scale experiment: Measurement for the mass loss due to erosion; Investigation on the fracture (piping channel) forming and resealing in the saturation process; Identification of the hydro-mechanical evolution with the test scale. c) Post-experiment dismantling analysis for saturated backfill: Measurement of dry density, and contents of organic and harmful substances; Investigation of water content distribution and homogenization of density differences; Identification of the hydro-chemical evolution with groundwater conditions. The results of this study could be directly used to establishing the experimental plan for verifying performance of backfill materials of DGR in Korea, provided that the domestic data such as facility design and site characteristics (including information on groundwater) are acquired.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼