RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

        Xuenan Chen,Manying Wang,Xiaohao Xu,Jianzeng Liu,Bing Mei,Pingping Fu,Da-Qing Zhao,Liwei Sun 고려인삼학회 2017 Journal of Ginseng Research Vol.41 No.3

        Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor b1, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed byWestern blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor b1 and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

      • SCIESCOPUSKCI등재

        Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

        Chen, Xuenan,Wang, Manying,Xu, Xiaohao,Liu, Jianzeng,Mei, Bing,Fu, Pingping,Zhao, Daqing,Sun, Liwei The Korean Society of Ginseng 2017 Journal of Ginseng Research Vol.41 No.3

        Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

      • KCI등재

        Exploring the oral microflora of preschool children

        Wen Ren,Qun Zhang,Xuenan Liu,Shuguo Zheng,Lili Ma,Feng Chen,Tao Xu,Baohua Xu 한국미생물학회 2017 The journal of microbiology Vol.55 No.7

        The oral cavity is one of the most important and complicated habitats in our body and supports diverse microbial communities. In this study, we aimed to determine the bacterial diversity and composition of various oral micro-niches. Samples were collected from supragingival plaque, saliva, and tongue coating from 10 preschool children (30 samples total). 16S rRNA gene pyrosequencing dataset generated 314,639 clean reads with an average of 10,488 ± 2,787 reads per sample. The phyla Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria were predominant, accounting for more than 90% of the total sequences. We found the highest α diversity, microbial richness, and evenness in plaque, compared with saliva and tongue coating. Plaque was also distinguished from saliva and tongue coating by phylogenetic distances (weighted UniFrac). Taxa with different relative abundances were further identified, confirming the existence of microbial differences across the three niches. Core microbiomes were defined of each niche; however, only a small proportion of operational taxonomic units (8.07%) were shared by the three niches. Coaggregation between Actinomyces spp. and Streptococcus spp. and other correlations among periodontal pathogens, such as Prevotella, Fusobacteria, Capnocytophaga, and Tannerella, were shown by a co-occurrence network. In summary, our study provides a framework of oral microbial communities in the population of preschool children as a baseline for further studies of oral diseases related to microbes.

      • SCIESCOPUSKCI등재

        Supragingival Plaque Microbial Community Analysis of Children with Halitosis<sup>s</sup>

        ( Wen Ren ),( Qun Zhang ),( Xuenan Liu ),( Shuguo Zheng ),( Lili Ma ),( Feng Chen ),( Tao Xu ),( Baohua Xu ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.12

        As one of the most complex human-associated microbial habitats, the oral cavity harbors hundreds of bacteria. Halitosis is a prevalent oral condition that is typically caused by bacteria. The aim of this study was to analyze the microbial communities and predict functional profiles in supragingival plaque from healthy individuals and those with halitosis. Ten preschool children were enrolled in this study; five with halitosis and five without. Supragingival plaque was isolated from each participant and 16S rRNA gene pyrosequencing was used to identify the microbes present. Samples were primarily composed of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Candidate phylum TM7. The α and β diversity indices did not differ between healthy and halitosis subjects. Fifteen operational taxonomic units (OTUs) were identified with significantly different relative abundances between healthy and halitosis plaques, and included the phylotypes of Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, and Capnocytophaga ochracea. We suggest that these OTUs are candidate halitosis-associated pathogens. Functional profiles were predicted using PICRUSt, and nine level-3 KEGG Orthology groups were significantly different. Hub modules of co-occurrence networks implied that microbes in halitosis dental plaque were more highly conserved than microbes of healthy individuals` plaque. Collectively, our data provide a background for the oral microbiota associated with halitosis from supragingival plaque, and help explain the etiology of halitosis.

      • KCI등재

        Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

        Hang Sun,Fangbing Liu,Liwei Sun,Jianzeng Liu,Manying Wang,Xuenan Chen,Xiaohao Xu,Rui Ma,Kai Feng,Rui Jiang 고려인삼학회 2016 Journal of Ginseng Research Vol.40 No.2

        Background: The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods: Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results: Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion: This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng.

      • SCIESCOPUSKCI등재

        Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

        Sun, Hang,Liu, Fangbing,Sun, Liwei,Liu, Jianzeng,Wang, Manying,Chen, Xuenan,Xu, Xiaohao,Ma, Rui,Feng, Kai,Jiang, Rui The Korean Society of Ginseng 2016 Journal of Ginseng Research Vol.40 No.2

        Background: The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods: Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results: Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion: This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng.

      • SCIESCOPUSKCI등재

        Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

        Huang, Qingxia,Lou, Tingting,Lu, Jing,Wang, Manying,Chen, Xuenan,Xue, Linyuan,Tang, Xiaolei,Qi, Wenxiu,Zhang, Zepeng,Su, Hang,Jin, Wenqi,Jing, Chenxu,Zhao, Daqing,Sun, Liwei,Li, Xiangyan The Korean Society of Ginseng 2022 Journal of Ginseng Research Vol.46 No.6

        Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD<sup>+</sup>-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼