RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Comparison of High Frequency Detailed Generator Models for Partial Discharge Localization

        S. M. Hassan Hosseini,S. M. Hosseini Bafghi 대한전기학회 2015 Journal of Electrical Engineering & Technology Vol.10 No.4

        This paper presents partial discharge localization in stator winding of generators using multi-conductor transmission line (MTL) and RLC ladder network models. The high-voltage (HV) winding of a 6kV/250kW generator has been modeled by MATLAB software. The simulation results of the MTL and the RLC ladder network models have been evaluated with the measurements results in the frequency domain by applying of the Pearson’s correlation coefficients. Two PD generated calibrator signals in kHz and MHz frequency range were injected into different points of generator winding and the signals simulated/measured at the both ends of the winding. For partial discharge localization in stator winding of generators is necessary to calculate the frequency spectrum of the PD current signals and then estimate the poles of the system from the calculated frequency spectrum. Finally, the location of PD can be estimated. This theory applied for the above generator and the simulation/measured results show the good correlation for PD Location for RLC ladder network and MTL models in the frequency range of kHz (10kHz<f<1MHz) and MHz (1MHz<f<5MHz) respectively.

      • KCI등재

        Fabrication and electrochemical characterization of PVC based electrodialysis heterogeneous ion exchange membranes filled with Fe3O4nanoparticles

        S.M. Hosseini,M. Askari,P. Koranian,S.S. Madaeni,A.R. Moghadassi 한국공업화학회 2014 Journal of Industrial and Engineering Chemistry Vol.20 No.4

        In this research, novel polyvinylchloride based electrodialysis heterogeneous cation exchange membranes were prepared by casting technique. Iron oxide nanoparticle was also employed as additive in membrane fabrication. The effect of additive concentration on electrochemical properties of homemade membranes was studied. SOM images showed uniform particles distribution and relatively uniform surfaces for the membranes. Membrane water content and ion exchange capacity were increased initially by increase in additive loading ratio to 2%wt and then showed decreasing trend by higher additive content to 8%wt. Membrane potential, permselectivity and transport number all were enhanced with increase of additive content in sodium and barium chloride ionic solutions. They showed different behaviors for the membranes in lead nitrate ionic solution. Membranes exhibited lower potential, selectivity and transport number for bivalent ions compared to monovalent ones. Permeability and flux were enhanced initially in sodium and barium chloride ionic solutions by increase in additive content up to 2%wt and then began to decrease by more additive loading. The electrodialysis experiment results showed that dialytic rate of lead ions removal was increased obviously by increase of additive concentration. Modified membranes showed better electrochemical properties compared to pristine one.

      • SCIESCOPUSKCI등재

        Comparison of High Frequency Detailed Generator Models for Partial Discharge Localization

        Hassan Hosseini, S.M.,Hosseini Bafghi, S.M. The Korean Institute of Electrical Engineers 2015 Journal of Electrical Engineering & Technology Vol.10 No.4

        This paper presents partial discharge localization in stator winding of generators using multi-conductor transmission line (MTL) and RLC ladder network models. The high-voltage (HV) winding of a 6kV/250kW generator has been modeled by MATLAB software. The simulation results of the MTL and the RLC ladder network models have been evaluated with the measurements results in the frequency domain by applying of the Pearson’s correlation coefficients. Two PD generated calibrator signals in kHz and MHz frequency range were injected into different points of generator winding and the signals simulated/measured at the both ends of the winding. For partial discharge localization in stator winding of generators is necessary to calculate the frequency spectrum of the PD current signals and then estimate the poles of the system from the calculated frequency spectrum. Finally, the location of PD can be estimated. This theory applied for the above generator and the simulation/measured results show the good correlation for PD Location for RLC ladder network and MTL models in the frequency range of kHz (10kHz<f<1MHz) and MHz (1MHz<f<5MHz) respectively.

      • Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity

        S.A.H., Hosseini,O., Rahmani,V., Refaeinejad,H., Golmohammadi,M., Montazeripour Techno-Press 2023 Advances in aircraft and spacecraft science Vol.10 No.1

        In this paper, the effect of deepness on in-plane free vibration behavior of a curved functionally graded (FG) nanobeam based on nonlocal elasticity theory has been investigated. Differential equations and boundary conditions have been developed based on Hamilton's principle. In order to figure out the size effect, nonlocal theory has been adopted. Properties of material vary in radial direction. By using Navier solution technique, the amount of natural frequencies has been obtained. Also, to take into account the deepness effect on vibrations, thickness to radius ratio has been considered. Differences percentage between results of cases in which deepness effect is included and excluded are obtained and influences of power-law exponent, nonlocal parameter and arc angle on these differences percentage are studied. Results show that arc angle and power law exponent parameters have the most influences on the amount of the differences percentage due to deepness effect. It has been observed that the inclusion of geometrical deep term and material distribution results in an increase in sensitivity of dimensionless natural frequency about variation of aforementioned parameters and a change in variation range of natural frequency. Finally, several numerical results of deep and shallow curved functionally graded nanobeams with different geometry dimensions are presented, which may serve as benchmark solutions for the future research in this field.

      • KCI등재

        Harmonic Optimization Techniques in Multi-Level Voltage-Source Inverter with Unequal DC Sources

        M. Ghasem Hosseini Aghdam,S. Hamid Fathi,Gevorg B. Gharehpetian 전력전자학회 2008 JOURNAL OF POWER ELECTRONICS Vol.8 No.2

        One of the major problems in electric power quality is the harmonic contents. There are several methods of indicating the quantity of harmonic contents. The most widely used measure is the total harmonic distortion (THD). Various switching techniques have been used in static converters to reduce the output harmonic content. This paper presents and compares the two harmonic optimization techniques, known as optimal minimization of the total harmonic distortion (OMTHD) technique and optimized harmonic stepped-waveform (OHSW) technique used in multi-level inverters with unequal dc sources. Both techniques are very effective and efficient for improving the quality of the inverter output voltage. First, we describe briefly the cascaded H-bridge multi-level inverter structure. Then, we present the switching algorithm for the inverter based on OHSW and OMTHD techniques. Finally, the results obtained for the two techniques are analyzed and compared. The results verify the effectiveness of the both techniques in multi-level voltage-source inverter with non-equal dc sources, clarifying the advantages of each technique.

      • A Comparison between Three Numerical Criteria for Prediction the Forming Limit Diagram of St14 Steel

        M. Moslemi,S.J. Hosseinipour,M.E. Hosseini,A.H. Gorji 한국소성가공학회 2011 기타자료 Vol.2011 No.8

        In this paper, the forming limit diagram (FLD) of a low carbon steel St14 (DIN 1623) is investigated experimentally and numerically. The objective of this study is to find a numerical criterion which enables a simple and reliable determination of the FLD. For this purpose, Out-of-plane stretching test method with hemispherical punch was simulated by using commercial finite element software, ABAQUSE 6.9. One-quarter of the geometry was used due to symmetry. The material was modeled as elastoplastic and the anisotropic properties were described by the Hill quadratic yield criterion. The model was assumed to be rate independent. Coulomb friction law was defined for all contact surfaces. The simulation process was performed in two steps. In the first step the blank-holder moves down and deforms the blank into the draw-bead. Then the punch moves up at 20 increments and deforms the specimen to a specified displacement. Three numerical criteria including maximum second thickness strain derivative (CRIT1), equivalent plastic strain increment ratio (CRIT2), and total equivalent plastic strain ratio (CRIT3) were evaluated and the forming limit curve (FLC) were obtained. The predicted FLC were compared with experimental data. Unlike the CRIT2, the CRIT1 and CRIT3 were in good agreements with were experimental data. The CRIT1 criterion predicted the lower bound of the experimental results. While by using the CRIT3 criterion both the lower and upper bounds of the experimental results were predicted.

      • KCI등재

        A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams

        M. Zamanian,H. Rezaei,M. Hadilu,S.A.A. Hosseini 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.16 No.5

        In many of microdevices a part of a microbeam is covered by a piezoelectric layer. Depend on the application a DC or AC voltage is applied between upper and lower side of the piezoelectric layer. A common method in many of previous works for evaluating the response of these structures is discretizing by Galerkin method. In these works often single mode shape of a uniform microbeam i.e. the microbeam without piezoelectric layer has been used as comparison function, and so the convergence of the solution has not been verified. In this paper the Galerkin method is used for discretization, and a comprehensive analysis on the convergence of solution of equation that is discretized using this comparison function is studied for both clamped-clamped and clamped-free microbeams. The static and dynamic solution resulted from Galerkin method is compared to the modal expansion solution. In addition the static solution is compared to an exact solution. It is denoted that the required numbers of uniform microbeam mode shapes for convergence of static solution due to DC voltage depends on the position and thickness of deposited piezoelectric layer. It is shown that when the clamped-clamped microbeam is coated symmetrically by piezoelectric layer, then the convergence for static solution may be obtained using only first mode. This result is valid for clamped –free case when it is covered by piezoelectric layer from left clamped side to the right. It is shown that when voltage is AC then the number of required uniform microbeam shape mode for convergence is much more than the number of required mode in modal expansion due to the dynamic effect of piezoelectric layer. This difference increases by increasing the piezoelectric thickness, the closeness of the excitation frequency to natural frequency and decreasing the damping coefficient. This condition is often indefeasible in microresonator system. It is concluded that discreitizing the equation of motion using one mode shape of uniform microbeam as comparison function in many of previous works causes considerable errors.

      • Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam

        Hosseini, S.A.H.,Moghaddam, M.H. Noroozi,Rahmani, O. Techno-Press 2020 Advances in aircraft and spacecraft science Vol.7 No.6

        The present study investigates axial vibration of a FG nanobeam using nonlocal elasticity theory under clamped-clamped and clamped-free boundary conditions. Power law, exponential law and sigmoid law are applied as grading laws to examine the effect of the material distribution on axial vibration of the FG nanobeam. A parametric study was done to examine the effect of length scale on the dynamic behavior of the structure and the results are presented. It was observed that consideration of the nonlocal length scale is essential when analyzing the free vibration of a FG nanobeam. The results of the present study can be used as benchmarks in future studies of FG nanostructures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼