RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Synthesis and Characterization of CdSe/CdS/N-Acetyl-L-Cysteine/Quercetin Nano-Composites and Their Antibacterial Performance

        Wang, Kunjie,Li, Mingliang,Li, Hongxia,Guan, Feng,Zhang, Deyi,Feng, Huixia,Fan, Haiyan Korean Chemical Society 2015 대한화학회지 Vol.59 No.2

        We have discovered that quercetin, once coated on the CdSe and CdSe-CdS quantum dots (QDs), becoming highly water soluble. In the present work, we have successfully synthesized CdSe/CdS/N-Acetyl-L-Cysteine(NAC)/Quercetin nano-composites in the aqueous solution. The products were characterized using UV-vis spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The transmission electron microscopy (TEM) tests indicated that our nano-composite products are highly stable with homogeneous particle size and great monodispersity. Quercetin coated nano-composite CdSe/CdS/NAC/Quercetin showed different fluorescence behavior from that of CdSe/CdS/NAC. Most amazingly, the synthesized CdSe/CdS/NAC/Quercetin nano-composite exhibits strong antibacterial activity. The combination of the strong fluorescence and its antibacterial activity makes the quercetin modified quantum dots as a potential candidate for cancer targeted therapy and other cancer treatments.

      • KCI등재

        Fabrication of nitrogen doped ordered mesoporous carbon derived from glucosamine with hybrid capacitive behaviors

        Deyi Zhang,Mei Han,Yubing Li,Bing Wang,Yi Wang,Kunjie Wang,Huixia Feng 한국탄소학회 2017 Carbon Letters Vol.23 No.-

        This paper introduces a nitrogen-doped ordered mesoporous carbon (NOMC) derived from glucosamine with hybrid capacitive behaviors, achieved by successfully combining electrical double-layer capacitance with pseudo-capacitance behaviors. The nitrogen doping content of the fabricated NOMC reached 7.4 at% while its specific surface area (SBET) and total pore volume reached 778 m2 g?1 and 1.17 cm3 g?1, respectively. A dual mesoporous structure with small mesopores centered at 3.6 nm and large mesopores centered at 9.9 nm was observed. The specific capacitance of the reported materials reached up to 328 F g?1, which was 2.1 times higher than that of pristine CMK-3. The capacitance retention rate was found to be higher than 87.9% after 1000 charge/discharge cycles. The supplementary pseudocapacitance as well as the enhanced wettability and conductivity due to the incorporation of nitrogen heteroatoms within the carbon matrixes were found to be responsible for the excellent capacitive performance of the reported NOMC materials.

      • KCI등재

        Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application

        Yang Binbin,Zhang Deyi,He Jingjing,Wang Yuling,Wang Kunjie,Li Hongxia,Wang Yi,Miao Lei,Ren Ruiye,Xie Mei 한국탄소학회 2020 Carbon Letters Vol.30 No.6

        To meet the increased performance and cost requirements of commercial supercapacitor, a N and O self-doped hierarchical porous carbon is fabricated via a green and simple self-activation route utilizing leaves of wild hollyhock as raw materials. Comparing to commercial activated carbon, the reported material exhibits some marked merits, such as simple and green fabrication process, low cost, and superior capacitance performance. The specifc surface area of the obtained N and O co�doped hierarchical porous carbon arrives 954 m2 g−1, and the content of the self-doped nitrogen and oxygen reaches 2.64 at.% and 7.38 at.%, respectively. The specifc capacitance of the obtained material reaches 226 F g−1 while the specifc capacitance of the symmetric supercapacitor arrives 47.3 F g−1. Meanwhile, more than 90.3% of initial specifc capacitance is kept under a current density of 20 A g−1, and no arresting degradation is observed for capacitance after 5000 times cycle, perfectly demonstrating the excellent cycle and rate capability of the obtained material. The obtained N and O co-doped hierarchical porous carbon are expected to be an ideal substitution for commercial activated carbon.

      • KCI등재

        Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self-activation of biomass: excellent rate capability and cycle stability

        Zhang Zhijian,He Jingjing,Tang Xingchang,Wang Yuling,Yang Binbin,Wang Kunjie,Zhang Deyi 한국탄소학회 2019 Carbon Letters Vol.29 No.6

        Energy and environmental are always two major challenges for the sustainable development of the modern human being. For avoiding the serious environmental pollution caused in the fabrication process of porous carbon, a popular energy storage material, we reported a facile, green and activating agent free route hereby directly carbonizing a special biomass, Glebionis coronaria. A nitrogen doped hierarchical porous carbon with a specific surface area of up to 1007 m2 g−1 and a N doping content of up to 2.65 at.% was facilely fabricated by employing the above route. Benefiting from the peculiarly hierarchical porous morphology, enhanced wettability and improved conductivity, the obtained material exhibits superior capacitance performance, which capacitance reaches up to 205 F g−1 under two-electrode configuration, and no capacitance loss is observed after 5000 cycles. Meanwhile, the capacitance retention of the obtained material arrives up to 95.0% even under a high current density of 20 A g−1, illuminating its excellent rate capability. The fabricated nitrogen-doped hierarchical porous carbon with larger capacitance than commercial activated carbon, excellent rate capability and cycle stability is an ideal cost-efficient substitution of commercial activated carbon for supercapacitor application.

      • SCIESCOPUSKCI등재

        Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self‑activation of biomass: excellent rate capability and cycle stability

        Zhijian Zhang,Jingjing He,Xingchang Tang,Yuling Wang,Binbin Yang,Kunjie Wang,Deyi Zhang 한국탄소학회 2019 Carbon Letters Vol.29 No.6

        Energy and environmental are always two major challenges for the sustainable development of the modern human being. For avoiding the serious environmental pollution caused in the fabrication process of porous carbon, a popular energy storage material, we reported a facile, green and activating agent free route hereby directly carbonizing a special biomass, Glebionis coronaria. A nitrogen doped hierarchical porous carbon with a specific surface area of up to 1007 m2 g−1 and a N doping content of up to 2.65 at.% was facilely fabricated by employing the above route. Benefiting from the peculiarly hierarchical porous morphology, enhanced wettability and improved conductivity, the obtained material exhibits superior capacitance performance, which capacitance reaches up to 205 F g−1 under two-electrode configuration, and no capacitance loss is observed after 5000 cycles. Meanwhile, the capacitance retention of the obtained material arrives up to 95.0% even under a high current density of 20 A g−1, illuminating its excellent rate capability. The fabricated nitrogen-doped hierarchical porous carbon with larger capacitance than commercial activated carbon, excellent rate capability and cycle stability is an ideal cost-efficient substitution of commercial activated carbon for supercapacitor application.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼