RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUS

        Analog Fault Detection Comparison between Supply Current and Output Voltage

        Chaojie Zhang,Guo He,Qiaobin Zhang 보안공학연구지원센터 2014 International Journal of Control and Automation Vol.7 No.11

        In view of the difficulties caused by determining threshold for fault detection of analog circuits, a method based on principal component analysis (PCA) was proposed to overcome these difficulties. The basic model of the proposed method and the general rule for analog fault detection were described in detail. Power supply current test has the advantages that only one test point is needed and there is no need to propagate fault effects to the outputs. Fault detection of analog circuits using PCA of power supply current was evaluated by experiment. The signal filtering and amplifying circuit used in the ultrasonic liquid sensor was selected as the research object. And the detection results using power supply current are compared with those using the output voltage under the same stimulus. The results show that the PCA based method can use the information in both time and frequency domain simultaneously, and it can overcome the difficulty in determining threshold by the expert’s empirical knowledge. These make it a more suitable candidate for fault detection of analog circuits than pure time-domain or pure frequency-domain methods.

      • KCI등재

        Fire Performance of Continuous Steel-Concrete Composite Bridge Girders

        Gang Zhang,Chaojie Song,Xuyang Li,Shuanhai He,Qiao Huang 대한토목학회 2021 KSCE Journal of Civil Engineering Vol.25 No.3

        This paper presents a detailed investigation in to fire resistance along with failure mode in continuous steel-concrete composite twin I-shaped bridge girders under different localized fire through considering fire severity and fire exposure positions namely; mid-span zone in one of the two span, hogging moment zone and side-support zone. A 3-D finite element (FE) model, built utilizing the computer program ANSYS, is used to track structural fire performance in a typical two span of continuous composite twin I-shaped bridge girders (fabricated with twin I-shaped plates supporting a concrete slab) dependent on thermo-mechanical coupled analysis. The model validation is undertook through comparison of temperature and deflection response attained from a scaled composite single I-shaped girder tested exposed to ISO834 fire. The numerical analysis results show that the developed model can be favorably used to analyze the behavior and failure mode of continuous steel-concrete composite twin I-shaped bridge girders during entire range of fire exposure. Fire severity and fire exposure positions present critical influence in to the fire resistance of continuous composite bridge girders. Fire exposure prevention on hogging moment zone can significantly extend failure time of continuous girders, and further hold back progressive structural collapse. Web buckling based failure criterion can be applicable to calculate fire resistance of realistic continuous girders under simultaneous structural loading together with localized fire. Continuous composite bridge girders subjected to localized fire present highly significant local deformation response in the fire exposed bridge girder span.

      • KCI등재

        A numerical method for evaluating fire performance of prestressed concrete T bridge girders

        Gang Zhang,Venkatesh Kodur,Chaojie Song,Wei Hou,Shuanhai He 사단법인 한국계산역학회 2020 Computers and Concrete, An International Journal Vol.25 No.6

        This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

      • SCIESCOPUSKCI등재

        Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

        Gao, Jiayuan,Zhao, Jinbin,He, Chaojie,Zhang, Shuaitao,Li, Fen The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.1

        For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

      • KCI등재

        Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

        Shuaitao Zhang,Jinbin Zhao,Yang Chen,Chaojie He 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.5

        Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

      • KCI등재

        Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

        Jiayuan Gao,Jin-Bin Zhao,Chaojie He,Shuaitao Zhang,Fen Li 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.1

        For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

      • SCIESCOPUSKCI등재

        Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

        Zhang, Shuaitao,Zhao, Jinbin,Chen, Yang,He, Chaojie The Korean Institute of Power Electronics 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.5

        Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼