RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        리튬이온전지용 $LiCoO_2$정극의 도전재료에 따른 초기 충방전 특성

        도칠훈,문성인,윤문수,박천준,염덕형,윤성규,Doh Chil-Hoon,Moon Seong-In,Yun Mun-Soo,Yun Suong-Kyu,Yum Duk-Hyung,Park Chun-Jun 한국전기화학회 1999 한국전기화학회지 Vol.2 No.3

        리튬이온전지용 $LiCoO_2$ 전극의 super s black 도전재료의 함량에 따른 초기 충방전 특성을 1 mol/l $LiPF_6/EC+DEC(1:3\;by\;w/w)$의 전해액에서 리튬기준전극에 대하여 4.3 V에서 2.0 V의 전위 구간에 대하여 C/4 및 C/2율로 충방전하여 측정하였다. 최초의 충전과정에서 high impedance충전 특성을 보였으며, super s black도전재료를 $3\%w/w$ 사용한 경우, $0.5 mA/cm^2$ 전류밀도의 충전에서 high impedance의 해소에 따라 $3.82\;{\Omega}\;{\cdot}\;g-LiCoCo_2$의 저항 감소를 나타내었으며, $0.728\;{\Omega}{\cdot}g-LiCoCo_2$의 전극저항과 비교하여 약 7배 높은 값을 나타내었다. 제2차 충전에의 high impedance해소는 약 $63\;{\Omega}{\cdot}g-LiCoCo_2$으로서 전극저항의 $12\%$ 정도이며, 제1차 충전의 high impedance해소에 비하여 $1.7\%$의 수준으로 감소하였다. 제1차 충전 및 방전 비용량은 C/4방전율에서 각각 160-161 및 $153\~155mAh/g-LiCoO_2$으로, 쿨롱효율은 $95.4\~96.4\%$였으며, 비가역 비용량은 약 6 mAh/g-$LiCoO_2$였다. 충전종료 지점에서 측정한 비저항은 도전재료 함량 $2\~7\%w/w$범위에서 낮은 값을 나타내어 비가역 비용량 특성의 변화와 일치하였다. 도전재료의 함량 증가에 따라 용량밀도가 감소하였으며, C/4율 방전에서 super s black함량 $2\%w/w$와 $2.9\%w/w$의 도전재료를 사용한 전극의 용량밀도는 각각 447mAh/ml 및 431 mAh/ml였다 Initial electrochemical characteristics of $LiCoO_2$ electrode for lithium ion battery with various content of super s black as conductive material were evaluated through the charge/discharge with the potential range of 4.3V to 2.0V versus $Li^+/Li^+$. The rate of C/4 and C/2 by the 3 electrode test cell composed with an electrolytic solution of 1 mol/l $LiPF_6/EC+DEC(1:3\;by\; weight)$. Lithium was used as reference electrode. High impedance charge behavior was observed at early stage of charge. In the case of $3\%w/w$ of super s black as conductive material, the specific resistance of the high impedance releasing was $3.82\;{\Omega}\;{\cdot}\;g-LiCoCo_2$ at the current density of $0.5 mA/cm^2$, which corresponds 7 times of the specific resistance of electrode $(0.728 g-LiCoO_2)$. At second charge, the specific resistance of the high impedance releasing was 63 mn · g-Lico02, which corresponds 12eio of the specific resistance of electrode and only $1.7\%$ of that of the first charge. The first charge and discharge specific capacities at C/4 rate were 160-161 and $153\~155mAh/g-LiCoO_2$, respectively, to lead $95.4\~96.4\%$ of coulombic efficiencies and ca. $6 mAh/g-LiCoO_2$ of initial irreversible specific capacity. Specific resistance at the end of charge and rest showed low value at content of super s black between 2 and $7\%w/w$, which agreed with characteristics of irreversible specific capacity. Capacity densities were reduced by the increasing the content of conductive material. They were 447 and 431mAh/ml when 2 and $2.9\%w/w$ of super s black were used, respectively, at the rate of C/4.

      • KCI등재후보

        루테늄 산화물-수계 전해액 수퍼캐패시터의 전위 특성

        도칠훈,최상진,문성인,윤문수,육경창,김상길,이주원,Doh, Chil-Hoon,Choi, Sang-Jin,Moon, Seong-In,Yun, Mun-Su,Yug, Gyeong-Chang,Kim, Sang-Gil,Lee, Ju-won 한국전기화학회 2003 한국전기화학회지 Vol.6 No.2

        [ $RuCI_3{\cdot}xH_2O$ ]로부터 제조한 비정질의 $RuO_2{\cdot}nH_2O$을 사용하여 탄탈륨 집전체상의 수퍼캐패시터 전극을 제조하였다. $RuO_2{\cdot}nH_2O$ 전극과 4.8 M 황산 전해액을 사용하여 $RuO_2$ 수퍼캐패시터를 제조하였다. 탄탈륨 박막은 0.0-1.1 V(vs.SCE)에서 안정적임을 AC impedance로 확인하고 수퍼캐패시터에 적용하였다. 루테늄 산화물 수퍼캐패시터는 약 1.0 V(vs. SCE)이상에서 비가역 가수분해 반응이 진행되었다 수퍼캐패시터를 0.5V(vs. SCE)의 protonation leve을 조정하고, 전압범위를 1V로 하여 충방전 시험할 경우 우수한 특성을 나타내었다. 이때 전극전위는 $-0.004\~0.995V(vs.SCE)$의 범위이고 positive 전극 및 negative 전극의 전위범위는 각각 $-0.004\~0.515V(vs.SCE)$ 및 $-0.515\~0.995V(vs.SCE)$이었다. The electrode for a supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloride hydrate$(RuO_2{\cdot}nH_2O)$. A supercapacitor was assembled with an electrode of ruthenium oxide material on a current collector of tantalum, and an electrolyte of 4.8 M sulfuric acid. The result of the AC impedance analyses on $Ta/H_2SO_4(4.8 M)/Pt$ cell showed that tantalum was stable at the potential range of $0.0\~1.1V(vs. SCE)$. Therefore, Ta film could be used the supercapacitor as a current collector. The irreversible hydrolysis in the supercapacitor occurred over ca. 1.0V(vs.SCE) when the supercapacitor was protonated to 0.5V(vs. SCE). The supercapacitor protonated to 0.5V(vs.SCE) showed good electrochemical properties when it was tested at the potential range of 1.0V in the charge-discharge test. The potential range of the electrodes including the positive and the negative electrode was varied between -0.004 and 0.995V(vs. SCE). The potential ranges of the positive and the negative electrode were $-0.004\~0.515V(vs.\;SCE)\;and\; 0.515\~0.995V(vs.\;SCE)$, respectively.

      • 온도에 따른 리튬염 유기전해액 리튬이차전지의 특성

        도칠훈,심은기,문성인,윤문수,염대일,노재호,황영기,Doh, Chil-Hoon,Shim, Eun-Gi,Moon, Seong-In,Yun, Mun-Soo,Yeom, Dale,Roh, Jae-Ho,Hwang, Young-Gi 한국전기화학회 2002 한국전기화학회지 Vol.5 No.3

        본 연구는 전해액 조성별로 ICR18650전지를 제조하여 $80^{\circ}C$에서 $-30^{\circ}C$까지 온도에서 전지특성을 비교하였다. 1M $LiPF_6,\;EC: DEC$ 전해액에 유전율이 높은 DMC 및 EMC 용매를 첨가한 1M $LiPF_6,\;EC: DEC: DMC(3:5:5)$ 및 1M $LiPF_6,\;EC:\;DEC:\;DMC:\;EMC(3:5:4:1)$ 전해액을 사용한 ICR18650 전지는 고온이나 저온에서 높은 비에너지를 나타내었다. $1M LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)$ 및 $1M LiPF6,\;EC:\;DEC:\;EMC(3:5:4:1)$전해액을 사용한 리튬이온전지의 비에너지는 상온$(25^{\circ}C)$에 대한 $-30^{\circ}C$의 비율로서 각각 $64\%$ 및 $59\%$를 나타내었다. This study investigated characteristics of ICR18650 batteries with different electrolyte compositions in the range of $80^{\circ}C\~-30^{\circ}C$. ICR18650 cells using $1M\;LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)\;and\; 1M\;LiPF_6,\;EC:\;DEC:\;DMC:\;EMC(3:5:4:1)$ electrolyte systems, which DMC and EMC solvent were added in $1M\;LiPF_6,\;EC:\;DEC$ electrolytes have high specific energy in the wide range of temperature. The specific energy of ICR18650 batteries using $1M\;LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)\;and\; 1M\;LiPF_6,\;EC:\;DEC;\:\;DMC:\;EMC(3:5:4:1)$ electrolyte at $-30^{\circ}C\;was\;64\%\;and\;59\%$ of room temperature$(25^{\circ}C)$, respectively.

      • KCI등재

        고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성

        도칠훈,정기영,진봉수,안계혁,민병철,최임구,박철완,이경직,문성인,윤문수,Doh, Chil-Hoon,Jeong, Ki-Young,Jin, Bong-Soo,An, Kay-Hyeok,Min, Byung-Chul,Choi, Im-Goo,Park, Chul-Wan,Lee, Kyeong-Jik,Moon, Seong-In,Yun, Mun-Soo 한국전기화학회 2006 한국전기화학회지 Vol.9 No.3

        실리콘 분말에 polyaniline(PAn)을 중합하고 탄화하여 Si-C재료를 개발하고 물리적 특성 및 전기화학적 특성을 분석하였다. 평균입도는 PAn의 중합으로 증가하였으며 탄화로 일부 감소하였다. XRD분석으로 결정질의 실리콘과 비결정성의 탄소 재료가 공존함을 확인 하였다. Si-PAn 전구체로 부터 개발한 Si-C 재료를 이용한 Si-C|Li cell은 Si|Li cell에 비하여 우수한 특성을 나타내었으며, 탄소 전구체인 PAn의 HCl 탈도핑에 의해 전기화학적 특성을 개선할 수 있었다. 전해액 중 FEC 첨가한 경우 초기 방전 용량이 증가하였다. GISOC시험으로 구한 가역 비용량 범위는 Si-C(Si:PAn=50:50wt. ratio)|Li 전지의 경우 약 414mAh/g를 나타내었으며, 가역 범위에 대한 초기 충방전의 intercalation 효율(IIE)는 75.7%였으며, 표면 비가역 비용량은 35.4mAh/g을 나타내었다. Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

      • KCI등재후보

        유기전해액에서 루테늄산화물 전극의 전기화학적 특성

        도칠훈,진봉수,문성인,윤문수,최상진,육경창,박정식,김상길,이주원,Doh, Chil-Hoon,Jin, Bong-Soo,Moon, Seong-In,Yun, Mun-Soo,Choi, Sang-Jin,Yug, Gyeong-Chang,Park, Jeong-Sik,Kim, Sang-Gil,Lee, Joo-Won 한국전기화학회 2003 한국전기화학회지 Vol.6 No.3

        금속산화물 전극을 이용한 전기화학 캐패시터는 일반적으로 산성 수용액 전해질에서 금속산화물에 대한 양성자의 가역적인 전기화학반응을 이용한다. 수계 전해질을. 사용한 수퍼캐패시터는 전위창(electrochemical stability window)이 유기계 전해질을 사용한 수퍼캐패시터에 비해 좁은 문제를 안고 있다. 금속산화물 전극과 리튬 또는 암모늄 이온을 함유한 유기계 전해질을 사용한 전기화학 캐패시터의 특성을 확인하였다. $RuO_2$ 전극을 사용한 전기화학 캐패시터는 1M $LiPF_6$, EC, DEC 및 EMC혼합용매 전해액 중에서 순환전위전류법(주사속도. 2mV/sec, 전위영역: $2.0\~4.2V(Li|Li^+))$으로 산화 및 환원에 대하여 비정전용량을 구한 바, 각각 145 및 $142F/g-RuO_2{\cdot}nH_2O$이었다 Electrochemical capacitor made with metal oxide electrode uses rapid and reversible protonation/deprotonation of metal oxide material under the aqueous acidic solution, generally. Electrochemical stability window of aqueous electrolyte-type capacitor is narrow compared to that of organic electrolyte-type capacitor. Electrochemical characteristics of electrochemical capacitor made with metal oxide electrode and lithium or ammonium cation based organic electrolyte were evaluated. Electrochemical capacitor based on $RuO_2$ electrode material and 1M $LiPF_6$ in mixed solvents of EC, DEC, and EMC has anodic and cathodic specific capacitance of 145 and $142F/g-RuO_2{\cdot}nH_2O$, respectively, by using cyclic voltammetry with scan rate of 2mV/sec $g-RuO_2$ in potential range of $2.0\~4.2V(Li|Li^+))$.

      • KCI등재

        PVDF 전구체를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극특성

        도칠훈,정기영,진봉수,김현수,문성인,윤문수,최임구,박철완,이경직,Doh, Chil-Hoon,Jeong, Ki-Young,Jin, Bong-Soo,Kim, Hyun-Soo,Moon, Seong-In,Yun, Mun-Soo,Choi, Im-Goo,Park, Cheol-Wan,Lee, Kyeong-Jik 한국전기전자재료학회 2006 전기전자재료학회논문지 Vol.19 No.7

        Si-C materials were synthesized by the heating the mixture of silicon and polyvinylidene fluoride (PVDF). The electrochemical properties of the Si-C materials as the high capacitive anode materials of lithium secondary batteries were evaluated by the galvanostatic charge-discharge test through 2032 type $Si-C{\mid}Li$ coin cells. Charge-discharge tests were performed at C/10 hour rate(C = 372 mAh/g). Initial discharge and charge capacities of $Si-C{\mid}Li$ cell using a Si-C material derived from PVDF(20wt.%) were found to be 1,830 and 526 mAh/g respectively. The initial discharge-charge characteristics of the developed Si-C electrode were analyzed by the electrochemical galvanostatic test adopting the capacity limited charge cut-off condition(GISOC). The range of reversible specific capacity IIE(intercalation efficiency at initial discharge-charge) and IICs(surface irreversible specific capacity) were 216 mAh/g, 68 % and 31 mAh/g, respectively.

      • KCI등재

        PC 비율에 따른 $LiPF_6/PC+EC+DEC$ 전해액의 물리적 특성 및 탄소분극과의 초기 전기화학적 특성

        도칠훈,문성인,윤문수,Doh Chil-Hoon,Moon Seong-In,Yun Mun-Soo 한국전기화학회 2000 한국전기화학회지 Vol.3 No.4

        흑연재료를 부극으로 사용하는 리튬2차전지의 유기 전해액으로 propylene carbonate(PC) 용매를 사용하면 흑연층간에 PC의 비가역적 삽입반응으로 인하여 흑연의 exfoliation이 진행된다. 유기전해액으로 ethylene carbonate(EC)를 사용하면 이러한 문제점은 해결되지만, EC의 어는점이 $36.2^{\circ}C$로 높은 것이 단점이다. EC계 전해액에 적정 비율의 PC를 첨가한 혼합 유기 전해액은 전도도가 향상 될 수 있으며, 흑연전극의 exfoliation도 감소시킬 수 있다. EC계 전해액에 첨가한 PC 함량에 따른 유전상수 및 몰전도도를 구하였으며, 동시에 탄소부극에 대한 전기화학적 특성을 조사하였다. $LiPF_6/EC+DEC$ 전해액에 첨가한 PC 함량이 증가하면 유전상수와 몰전도도는 직선적으로 증가하였다. 충방전 시험결과, MCMB-6-28s및 MPCF300의 비가역비용량은 첨가한 PC함량이 $0.83\%$인 경우에는 감소하였으나, 그 이후에는 PC함량에 따라 증가하였다 MPCF3000및 PCG100의 비가역비용량은 PC함량이 $10\%$까지는 50mAh/g이하였다. 그러나, 방전비용량은 첨가한 PC 함량과 관계없이 사용한 탄소재료에 따라서 일정한 값을 나타내었다. The exfoliation of graphite (layer) was progressed due to the irreversible insertion of PC molecules between graphene layers, when propylene carbonate (PC) solvent was used as the organic solvents. The problem could be mitigated by the replacement of PC by ethylene carbonate (EC). But, the freezing point of EC-based electrolyte increased due to the high freezing point of $EC(36.2^{\circ}C)$. Therefore, EC+PC mixed electrolyte is expected as a good organic electrolyte for lithium ion battery. The EC-based organic electrolyte containing PC within pertinent quantity can be expected to have high molar conductivity and reduced exfoliation of graphite layer. The dielectric constant and molar conductivity of $LiPF_6/PC+EC+DEC$ electrolyte was investigated with a variation in the PC content. The electrochemical properties of carbon electrode in the electrolyte were also investigated. Molar conductivity and dielectric constant increased linearly by increasing the PC volume fraction in the electrolyte. The results of charge-discharge test for carbon/electrolyte/Li cell indicated that the initial irreversible specific capacity(IIC) of MCMB-6-28s and MPCF3000 decreased by the addition of $0.83 vol\%$ of PC, but increased with PC content over than $0.83 vol\%$. In the case of MPCF3000 and PCG100 having less than $10 vol\%$ PC, IIC was lower than 50 mAh/g. The discharge specific capacities varied with carbon material, but did not vary with PC content in the electrolyte.

      • 리튬이온전지 75 Ah급 파우치형의 충전상태에 따른 엔트로피, 내부저항, 개회로전위 및 비열

        도칠훈(Chil-Hoon Doh),하윤철(Yoon-Cheol Ha),엄승욱(Seong-Wook Eom) 한국전지학회 2021 한국전지학회지 Vol.1 No.2

        전지의 대형화와 직·병렬 집적화에 따라서 흡·발열량, 온도변화, 내부저항의 변화를 예견하고 측정하여 감시하는 것은 이동형의 electric vehicle(EV)과 고정형의 battery energy storage system(BESS)을 안전하게 운용할 수 있도록 하는 중요한 일이다. 전지의 정전류 충·방전과 단락 등 급격한 전지 전위의 변화에 대한 발열과 흡열의 열화학 관계를 기 발표한 논문의 내용을 요약하여 서론에 나타내었다. 본 연구에서는 가속율열량계(accelerated rate calorimeter, ARC)를 이용하여 75 Ah 급 파우치형 리튬이차전지의 충전상태를 점진적으로 증가시키면서 준-단열 상태의 slow cooling 방법으로 충전상태별로 엔트로피, 비열, 내부저항 및 개회로전압을 측정한 결과를 보고합니다. It is important to understand the thermo-electro-chemical reaction of battery for the safe operation of mobile electric vehicle (EV) and stationary battery energy storage system (BESS). The thermo-electro-chemistry of battery could give information on exo-/endo-thermically generated heat, temperature variation and variation of internal resistance. Which features could be used for safe operation of battery. The thermo-electrochemical reaction of battery were summarized for the condition of galvanostatic and potentiostatic charge/discharge operation. In here, some thermo-electro-chemical parameters such as entropy, open circuit cell potential and specific heat capacity were evaluated for 75 Ah pouch lithium ion battery along with the state of charge (SOC) using an accelerated rate calorimeter (ARC).

      • SCOPUSKCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼