RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO<sub>2</sub>와 CH<sub>4</sub> 방출 특성 = Fertilizer and Organic Inputs Effects on CO<sub>2</sub> and CH<sub>4</sub> Emission from a Soil under Changing Water Regimes

      한글로보기

      https://www.riss.kr/link?id=A105168891

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.
      번역하기

      BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic i...

      BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼