http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Statistical Bias and Inflated Variance in the Genehunter Nonparametric Linkage Test Statistic
Song, Hae-Hiang,Choi, Eun-Kyeong The Korean Statistical Society 2009 Communications for statistical applications and me Vol.16 No.2
Evidence of linkage is expressed as a decreasing trend of the squared trait difference of two siblings with increasing identical by descent scores. In contrast to successes in the application of a parametric approach of Haseman-Elston regression, notably low powers are demonstrated in the nonparametric linkage analysis methods for complex traits and diseases with sib-pairs data. We report that the Genehunter nonparametric linkage statistic is biased and furthermore the variance formula that they used is an inflated one, and this is one reason for a low performance. Thus, we propose bias-corrected nonparametric linkage statistics. Simulation studies comparing our proposed nonparametric test statistics versus the existing test statistics suggest that the bias-corrected new nonparametric test statistics are more powerful and attains efficiencies close to that of Haseman-Elston regression.
STATISTICS PRESENT, NEAR FUTURE, AND BEYOND
Johnson, Richard A. The Korean Statistical Society 2001 Communications for statistical applications and me Vol.8 No.-
We berlin with a brief review of some important advances made in statistical theory over the last decade. The choice of topics is decidedly influenced by personal interests. Based on this review, we then propose some possible scenarios about the future of statistics.
Design of On-line Process Control with Variable Measurement Interval
Park, Changsoon The Korean Statistical Society 2000 Journal of the Korean Statistical Society Vol.29 No.3
A mixed model with a white noise process and an IMA(0,1,1) process is considered as a process model. It is assumed that the process is a white noise in the absence of a special cause and the process changes to an IMA(0,1,1) due to a special cause. One useful scheme in measuring the process level is to use the variable measurement interval (VMI) between measurement times according to the value of the previous chart statistic. The advantage of the VMI scheme is to measure the process level infrequently when in control to save the measurement cost and to measure frequently when out of control to save the off-target cost. This paper considers the VMI scheme in order to detect changes in the process model from a white noise to an IMA(0,1,1). The VMI scheme is shown to be effective compared to the standard fixed measurement interval (FMI) scheme in both statistical and economic contexts.
A Bayes Reliability Estimation from Life Test in a Stress-Strength Model
Park, Sung-Sub,Kim, Jae-Joo The Korean Statistical Society 1983 Journal of the Korean Statistical Society Vol.12 No.1
A stress-strength model is formulated for s out of k system of identical components. We consider the estimation of system reliability from survival count data from a Bayesian viewpoint. We assume a quadratic loss and a Dirichlet prior distribution. It is shown that a Bayes sequential procedure can be established. The Bayes estimator is compared with the UMVUE obtained by Bhattacharyya and with an estimator based on Mann-Whitney statistic.
Note on response dimension reduction for multivariate regression
Yoo, Jae Keun The Korean Statistical Society 2019 Communications for statistical applications and me Vol.26 No.5
Response dimension reduction in a sufficient dimension reduction (SDR) context has been widely ignored until Yoo and Cook (Computational Statistics and Data Analysis, 53, 334-343, 2008) founded theories for it and developed an estimation approach. Recent research in SDR shows that a semi-parametric approach can outperform conventional non-parametric SDR methods. Yoo (Statistics: A Journal of Theoretical and Applied Statistics, 52, 409-425, 2018) developed a semi-parametric approach for response reduction in Yoo and Cook (2008) context, and Yoo (Journal of the Korean Statistical Society, 2019) completes the semi-parametric approach by proposing an unstructured method. This paper theoretically discusses and provides insightful remarks on three versions of semi-parametric approaches that can be useful for statistical practitioners. It is also possible to avoid numerical instability by presenting the results for an orthogonal transformation of the response variables.
Kim, S.H,Kim, T.S. The Korean Statistical Society 1998 Communications for statistical applications and me Vol.5 No.3
For a random sample of size n from general linear model, $Y_i= heta(X_i)+varepsilon_i,;let Y_{in}$ denote the ith oder statistics of the Y sample values. The X-value associated with $Y_{in}$ is denoted by $X_{[in]}$ and is called the concomitant of ith order statistics. The estimator of the location of a maximum of a regression function, $ heta$($\chi$), was proposed by (equation omitted) and was found the convergence rate of it under certain weak assumptions on $ heta$. We will discuss the asymptotic distributions of both $ heta(X_{〔n-r+1〕}$) and (equation omitted) when r is fixed as nolongrightarrow$\infty$(i.e. extreme case) on the basis of the theorem of the concomitants of order statistics. And the will investigate the asymptotic behavior of Max{$\theta$( $X_{〔n-r+1:n〕/}$ ), . , $\theta$( $X_{〔n:n〕}$)}as an estimator for the peak of a regression function.
Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic
Ha, Hyung-Tae,Yang, Wan-Youn The Korean Statistical Society 2011 응용통계연구 Vol.24 No.6
The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.
Non-identifiability and testability of missing mechanisms in incomplete two-way contingency tables
Park, Yousung,Oh, Seung Mo,Kwon, Tae Yeon The Korean Statistical Society 2021 Communications for statistical applications and me Vol.28 No.3
We showed that any missing mechanism is reproduced by EMAR or MNAR with equal fit for observed likelihood if there are non-negative solutions of maximum likelihood equations. This is a generalization of Molenberghs et al. (2008) and Jeon et al. (2019). Nonetheless, as MCAR becomes a nested model of MNAR, a natural question is whether or not MNAR and MCAR are testable by using the well-known three statistics, LR (Likelihood ratio), Wald, and Score test statistics. Through simulation studies, we compared these three statistics. We investigated to what extent the boundary solution affect tesing MCAR against MNAR, which is the only testable pair of missing mechanisms based on observed likelihood. We showed that all three statistics are useful as long as the boundary proximity is far from 1.
Basic Statistics in Quantile Regression
Kim, Jae-Wan,Kim, Choong-Rak The Korean Statistical Society 2012 응용통계연구 Vol.25 No.2
In this paper we study some basic statistics in quantile regression. In particular, we investigate the residual, goodness-of-fit statistic and the effect of one or few observations on estimates of regression coefficients. In addition, we compare the proposed goodness-of-fit statistic with the statistic considered by Koenker and Machado (1999). An illustrative example based on real data sets is given to see the numerical performance of the proposed basic statistics.
Optimizing the maximum reported cluster size for normal-based spatial scan statistics
Yoo, Haerin,Jung, Inkyung The Korean Statistical Society 2018 Communications for statistical applications and me Vol.25 No.4
The spatial scan statistic is a widely used method to detect spatial clusters. The method imposes a large number of scanning windows with pre-defined shapes and varying sizes on the entire study region. The likelihood ratio test statistic comparing inside versus outside each window is then calculated and the window with the maximum value of test statistic becomes the most likely cluster. The results of cluster detection respond sensitively to the shape and the maximum size of scanning windows. The shape of scanning window has been extensively studied; however, there has been relatively little attention on the maximum scanning window size (MSWS) or maximum reported cluster size (MRCS). The Gini coefficient has recently been proposed by Han et al. (International Journal of Health Geographics, 15, 27, 2016) as a powerful tool to determine the optimal value of MRCS for the Poisson-based spatial scan statistic. In this paper, we apply the Gini coefficient to normal-based spatial scan statistics. Through a simulation study, we evaluate the performance of the proposed method. We illustrate the method using a real data example of female colorectal cancer incidence rates in South Korea for the year 2009.