RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Performance Estimation of a Louver Dust Collector Attached to the Bottom of a Subway Train Running in a Tunnel

        Sim, Jung-Bo,Woo, Sang-Hee,Kim, Won-Geun,Yook, Se-Jin,Kim, Jong Bum,Bae, Gwi-Nam,Yoon, Hwa Hyun [Chinese Association for Aerosol Research in Taiwa 2017 Aerosol and air quality research Vol.17 No.8

        <P> In underground tunnels, friction between the wheels and rails of subway trains creates particles, which are spread by the wind generated when trains pass by. A louver dust collector was attached to the bottom of a T-car of Seoul Subway Line 5 train in an effort to remove PM<SUB>10</SUB> inside tunnels, and obtain data when it was in actual operation. It made several round trips during which differential pressure of the louver dust collector was measured in relation to train speed. By comparing and verifying the differential pressure estimated by simulation and that actually measured, it was possible to estimate average flow of air that went into the louver dust collector. Furthermore, by comparing and verifying the measurement results on collection efficiency of a lab-scale louver dust collector in a wind tunnel, along with the results of numerical analysis, it was possible to estimate the collection efficiency in relation to subway train speed. As a result, it was confirmed that higher running speeds of subway trains increased the flow of air going into the louver dust collector and subsequently decreased the particle size corresponding to 50% collection efficiency. In other words, the cut-off size was estimated to be 9.7 μm at the lowest speed of 5 km h<SUP>-1</SUP>, and 4.9 μm at the top speed of 65 km h<SUP>-1</SUP>, in normal speed range for the Seoul Subway Line 5 trains. </P>

      • Generation Characteristics of Nanoparticles Emitted from Subways in Operation

        Lee, Yongil,Choi, Kyomin,Jung, Wonseog,Versoza, Michael E.,Barabad, Mona Loraine M.,Kim, Taesung,Park, Duckshin [Chinese Association for Aerosol Research in Taiwa 2018 Aerosol and air quality research Vol.18 No.9

        <P> In this study, measurements were carried out to identify the generation characteristics of wear particles emitted under a subway cabin during operation. Along with a fast mobility particle sizer, probes were installed under a subway cabin and in a subway tunnel to measure the size distributions of nanoparticles at 1-s intervals. Based on the particle density measured under the cabin minus that measured in the tunnel, the size distribution of wear particles generated under the cabin during deceleration was estimated to be bimodal at 165.5 nm and 6.98 nm. These particles were most likely generated from wheel-rail contact, as the train utilized electric braking (no mechanical force applied). In addition, a change in the wear mechanism appears to have arisen due to the increased temperature of the wheel-rail contact while nanoparticles were being emitted, leading to an initial generation of 165.5-nm particles followed by 6.98-nm particles 1 s later. </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼