RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

        Wang, Ming,Zheng, Jinxing,Song, Yuntao,Li, Ming,Zeng, Xianhu Korean Nuclear Society 2020 Nuclear Engineering and Technology Vol.52 No.9

        For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

      • KCI등재

        Investigating the effects of a range shifter on skin dose in proton therapy

        Wang Ming,Zhang Lei,Zheng Jinxing,Li Guodong,Dai Wei,Dong Lang 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.1

        Proton treatment may deliver a larger dose to a patient’s skin than traditional photon therapy, especially when a range shifter (RS) is inserted in the beam path. This study investigated the effects of an RS on skin dose while considering RS with different thicknesses, airgaps and materials. First, the physical model of the scanning nozzle with RS was established in the TOol for PArticle Simulation (TOPAS) code, and the effects of the RS on the skin dose were studied. Second, the variations in the skin dose and isocenter beam size were examined by reducing the air gap. Finally, the effects of different RS materials, such as polymethylmethacrylate (PMMA), Lexan, polyethylene and polystyrene, on the skin dose were analysed. The results demonstrated that the current RS design had a negligible effect on the skin dose, whereas the RS significantly impacted the isocenter beam size. The skin dose was increased considerably when the RS was placed close to the phantom. Moreover, the magnitude of the increase was related to the thickness of the inserted RS. Meanwhile, the results also revealed that the secondary proton primarily contributed to the increased skin dose.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼