RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An eight-degree-of-freedom upper extremity exoskeleton rehabilitation robot: design, optimization, and validation

        Yuansheng Ning,Hongbo Wang,Junjie Tian,Hao Yan,Yu Tian,Congliang Yang,Jian Wei,Jianye Niu 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.11

        Upper extremity exoskeleton rehabilitation robots can be used for the training of patients with upper extremity motor dysfunction. In most cases, the design of such robots focuses on the configuration and the human-machine compatibility. For patients, the use of an exoskeleton rehabilitation robot mainly aims to improve their movement ability, which depends on the range of movement of the upper extremity joints. This paper proposes an eight-degreeof-freedom (DOF) upper extremity exoskeleton rehabilitation robot to improve the movement range of the patient’s upper extremity joints. The structural parameters of the shoulder joint are optimized and analyzed by the kinematic equations of the mechanism and the cyclic iteration algorithm such that the movement range of the patient joint can be maximized. The movement space of the robot is then simulated. Finally, the movement range of the rehabilitation robot joints and the movement space of the rehabilitation robot were measured. Experimental results show that the upper extremity exoskeleton rehabilitation robot can meet the patient’s shoulder, elbow, and wrist movement range, and the overlap with the human upper extremity movement space is 97.1 % and 95.7 % in the coronal and sagittal planes, respectively.

      • KCI등재

        Improved inverse kinematics and dynamics model research of general parallel mechanisms

        Xingchao Zhang,Hongbo Wang,Yu Rong,Jianye Niu,Junjie Tian,Shanshan Li,Yuansheng Ning 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.2

        Since the classical kinematics model of parallel manipulators cannot accurately reflect the angular velocity and angular acceleration of the limbs, an improved kinematics model is proposed and an inverse dynamic model of the general parallel manipulator is derived based on the improved kinematics model. This paper proves that the shortcoming of the classical kinematics model is that a single model cannot accurately describe the movement of several types of branches in a parallel manipulator. Combined with the principle of angular velocity superposition and vector chain method, the improved kinematic models of the general parallel manipulator’s several typical limbs are derived. Then, an explicit inverse dynamic model of a general parallel robot is established based on the principle of virtual work. Finally, to describe the effectiveness of the improved model, we analyzed a new type of UP+SPR+SPU parallel manipulator. The improved models had higher accuracy than the classical models through the comparison.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼