RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Multiannual Top-Down Estimate of HFC-23 Emissions in East Asia

        Fang, X.,Stohl, A.,Yokouchi, Y.,Kim, J.,Li, S.,Saito, T.,Park, S.,Hu, J. American Chemical Society 2015 Environmental science & technology Vol.49 No.7

        <P>Trifluoromethane (CHF<SUB>3</SUB>, HFC-23), with a 100-year global warming potential (GWP) of 12400, is regulated under the Kyoto Protocol. HFC-23 emissions in East Asia, especially in China, are currently thought to represent the majority of global HFC-23 emissions. This study provides both a bottom-up emission inventory and the multiannual top-down estimate of HFC-23 emissions in East Asia during 2007–2012. The new bottom-up inventory yields improved simulated HFC-23 mixing ratios compared to previous bottom-up inventories. The top-down estimate uses inverse modeling to further improve the model-measurement agreement. Results show that China contributed 94–98% of all HFC-23 emissions in East Asia. Annual a posteriori emissions from China were around 6.3 Gg/yr during the period 2007–2010 after which they increased to 7.1 ± 0.7 Gg/yr in 2011 and 8.8 ± 0.8 Gg/yr in 2012. For the first time, this study also provides a top-down estimate of HFC-23/HCFC-22 (chlorodifluoromethane, CHClF<SUB>2</SUB>) coproduction ratios in non-CDM (Clean Development Mechanism) HCFC-22 production plants as well as in all HCFC-22 production plants in China.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/esthag/2015/esthag.2015.49.issue-7/es505669j/production/images/medium/es-2014-05669j_0005.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/es505669j'>ACS Electronic Supporting Info</A></P>

      • Sulfur hexafluoride (SF6) emissions in East Asia determined by inverse modeling

        Fang, X.,Thompson, R. L.,Saito, T.,Yokouchi, Y.,Kim, J.,Li, S.,Kim, K. R.,Park, S.,Graziosi, F.,Stohl, A. Copernicus GmbH 2014 Atmospheric chemistry and physics Vol.14 No.9

        <P>Abstract. Sulfur hexafluoride (SF6) has a global warming potential of around 22 800 over a 100-year time horizon and is one of the greenhouse gases regulated under the Kyoto Protocol. Around the year 2000 there was a reversal in the global SF6 emission trend, from a decreasing to an increasing trend, which was likely caused by increasing emissions in countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change. In this study, SF6 emissions during the period 2006-2012 for all East Asian countries - including Mongolia, China, Taiwan, North Korea, South Korea and Japan - were determined by using inverse modeling and in situ atmospheric measurements. We found that the most important sources of uncertainty associated with these inversions are related to the choice of a priori emissions and their assumed uncertainty, the station network as well as the meteorological input data. Much lower uncertainties are due to seasonal variability in the emissions, inversion geometry and resolution, and the measurement calibration scale. Based on the results of these sensitivity tests, we estimate that the total SF6 emission in East Asia increased rapidly from 2404 ± 325 Mg yr−1 in 2006 to 3787 ± 512 Mg yr−1 in 2009 and stabilized thereafter. China contributed 60-72% to the total East Asian emission for the different years, followed by South Korea (8-16%), Japan (5-16%) and Taiwan (4-7%), while the contributions from North Korea and Mongolia together were less than 3% of the total. The per capita SF6 emissions are highest in South Korea and Taiwan, while the per capita emissions for China, North Korea and Japan are close to global average. During the period 2006-2012, emissions from China and from South Korea increased, while emissions from Taiwan and Japan decreased overall. </P>

      • Global and regional emission estimates for HCFC-22

        Saikawa, E.,Rigby, M.,Prinn, R. G.,Montzka, S. A.,Miller, B. R.,Kuijpers, L. J. M.,Fraser, P. J. B.,Vollmer, M. K.,Saito, T.,Yokouchi, Y.,Harth, C. M.,,hle, J.,Weiss, R. F.,Salameh, P. K.,Kim, J Copernicus GmbH 2012 Atmospheric chemistry and physics Vol.12 No.21

        <P>Abstract. HCFC-22 (CHClF2, chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs) controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA) and a few Northern Hemisphere air samples (mostly from Trinidad Head) using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP), as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates that the global HCFC-22 emissions have an increasing trend between 1995 and 2009. We further find a surge in HCFC-22 emissions between 2005 and 2009 from developing countries in Asia - the largest emitting region including China and India. Globally, substantial emissions continue despite production and consumption being phased out in developed countries currently. </P>

      • Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling

        Stohl, A.,Kim, J.,Li, S.,O&,apos,Doherty, S.,,hle, J.,Salameh, P. K.,Saito, T.,Vollmer, M. K.,Wan, D.,Weiss, R. F.,Yao, B.,Yokouchi, Y.,Zhou, L. X. Copernicus GmbH 2010 Atmospheric Chemistry and Physics Vol.10 No.8

        <P>Abstract. The emissions of three hydrochlorofluorocarbons, HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F) and HCFC-142b (CH3CClF2) and three hydrofluorocarbons, HFC-23 (CHF3), HFC-134a (CH2FCF3) and HFC-152a (CH3CHF2) from four East Asian countries and the Taiwan region for the year 2008 are determined by inverse modeling. The inverse modeling is based on in-situ measurements of these halocarbons at the Japanese stations Cape Ochi-ishi and Hateruma, the Chinese station Shangdianzi and the South Korean station Gosan. For every station and every 3 h, 20-day backward calculations were made with the Lagrangian particle dispersion model FLEXPART. The model output, the measurement data, bottom-up emission information and corresponding uncertainties were fed into an inversion algorithm to determine the regional emission fluxes. The model captures the observed variation of halocarbon mixing ratios very well for the two Japanese stations but has difficulties explaining the large observed variability at Shangdianzi, which is partly caused by small-scale transport from Beijing that is not adequately captured by the model. Based on HFC-23 measurements, the inversion algorithm could successfully identify the locations of factories known to produce HCFC-22 and emit HFC-23 as an unintentional byproduct. This lends substantial credibility to the inversion method. We report national emissions for China, North Korea, South Korea and Japan, as well as emissions for the Taiwan region. Halocarbon emissions in China are much larger than the emissions in the other countries together and contribute a substantial fraction to the global emissions. Our estimates of Chinese emissions for the year 2008 are 65.3±6.6 kt/yr for HCFC-22 (17% of global emissions extrapolated from Montzka et al., 2009), 12.1±1.6 kt/yr for HCFC-141b (22%), 7.3±0.7 kt/yr for HCFC-142b (17%), 6.2±0.7 kt/yr for HFC-23 (>50%), 12.9±1.7 kt/yr for HFC-134a (9% of global emissions estimated from Velders et al., 2009) and 3.4±0.5 kt/yr for HFC-152a (7%). </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼