RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Improved binary gaining–sharing knowledge-based algorithm with mutation for fault section location in distribution networks

        Xiong Guojiang,Yuan Xufeng,Mohamed Ali Wagdy,Chen Jun,Zhang Jing 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.2

        Fault section location (FSL) plays a critical role in shortening blackout time and restoring power supply for distribution networks. This paper converts the FSL task into a binary optimization problem using the feeder terminal unit (FTU) information. The discrepancy between the reported overcurrent alarms and the expected overcurrent states of the FTUs is adopted as the objective function. It is a typical 0–1 combinatorial optimization problem with many local optima. An improved binary gaining–sharing knowledge-based algorithm (IBGSK) with mutation is proposed to effectively solve this challenging binary optimization problem. Since the original GSK cannot be applied in binary search space directly, and it is easy to get stuck in local optima, IBGSK encodes the individuals as binary vectors instead of real vectors. Moreover, an improved junior gaining and sharing phase and an improved senior gaining and sharing phase are designed to update individuals directly in binary search space. Furthermore, a binary mutation operator is presented and integrated into IBGSK to enhance its global search ability. The proposed algorithm is applied to two test systems, i.e. the IEEE 33-bus distribution network and the USA PG&E 69-bus distribution network. Simulation results indicate that IBGSK outperforms the other 12 advanced algorithms and the original GSK in solution quality, robustness, convergence speed, and statistics. It equilibrates the global search ability and the local search ability effectively. It can diagnose different fault scenarios with 100% and 99% success rates for these two test systems, respectively. Besides, the effect of mutation probability on IBGSK is also investigated, and the result suggests a moderate value. Overall, simulation results demonstrate that IBGSK shows highly promising potential for the FSL problem of distribution networks.

      • KCI등재

        Hybridizing gaining–sharing knowledge and differential evolution for large-scale power system economic dispatch problems

        Liu Qinghua,Xiong Guojiang,Fu Xiaofan,Mohamed Ali Wagdy,Zhang Jing,Al-Betar Mohammed Azmi,Chen Hao,Chen Jun,Xu Sheng 한국CDE학회 2023 Journal of computational design and engineering Vol.10 No.2

        Economic dispatch (ED) of thermal power units is significant for optimal generation operation efficiency of power systems. It is a typical nonconvex and nonlinear optimization problem with many local extrema when considering the valve-point effects, especially for large-scale systems. Considering that differential evolution (DE) is efficient in locating global optimal region, while gain-sharing knowledge-based algorithm (GSK) is effective in refining local solutions, this study presents a new hybrid method, namely GSK-DE, to integrate the advantages of both algorithms for solving large-scale ED problems. We design a dual-population evolution framework in which the population is randomly divided into two equal subpopulations in each iteration. One subpopulation performs GSK, while the other executes DE. Then, the updated individuals of these two subpopulations are combined to generate a new population. In such a manner, the exploration and the exploitation are harmonized well to improve the searching efficiency. The proposed GSK-DE is applied to six ED cases, including 15, 38, 40, 110, 120, and 330 units. Simulation results demonstrate that GSK-DE gives full play to the superiorities of GSK and DE effectively. It possesses a quicker global convergence rate to obtain higher quality dispatch schemes with greater robustness. Moreover, the effect of population size is also examined.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼