RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO2 towards boosting interfacial bonding in bone scaffold

        Pei Feng,Jiye Jia,Shuping Peng,Yang Shuai,Hao Pan,Xinna Bai,CIJUN SHUAI 한국생체재료학회 2022 생체재료학회지 Vol.26 No.1

        Background: The reinforcement effect of fiber-reinforced polymer composites is usually limited because of the poor interfacial interaction between fiber and polymer, though fiber reinforcement is regarded as an effective method to enhance the mechanical properties of polymer. Methods: In this study, nano-SiO2 particles grafted by 3-Glycidoxypropyltrimethoxysilane (KH560) were introduced onto the surface of 3-Aminopropyltriethoxysilane (KH550) modified carbon fiber (CF) by a self-assembly strategy to improve the interfacial bonding between CF and biopolymer poly (lactic acid) (PLLA). Results: The results indicated that PLLA chains preferred to anchor at the surface of nano-SiO2 particles and then formed high order crystalline structures. Subsequently, PLLA spherulites could epitaxially grow on the surface of functionalized CF, forming a transcrystalline structure at the CF/PLLA interface. Meanwhile, the nano-SiO2 particles were fixed in the transcrystalline structure, which induced a stronger mechanical locking effect between CF and PLLA matrix. The results of tensile experiments indicated that the PLLA/CF-SiO2 scaffold with a ratio of CF to SiO2 of 9:3 possessed the optimal strength and modulus of 10.11 MPa and 1.18 GPa, respectively. In addition, in vitro tests including cell adhesion and fluorescence indicated that the scaffold had no toxicity and could provide a suitable microenvironment for the growth and proliferation of cell. Conclusion: In short, the PLLA/CF-SiO2 scaffold with good mechanical properties and cytocompatibility had great potential in the application of bone tissue engineering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼