RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재
      • KCI등재

        Adenovirus as a new agent for multiple myeloma therapies: Opportunities and restrictions

        Svjetlana Raus,Silvia Coin,Vladia Monsurrò 대한혈액학회 2011 Blood Research Vol.46 No.4

        Multiple myeloma is a malignancy of B-cells that is characterized by the clonal expansion and accumulation of malignant plasma cells in the bone marrow. This disease remains incurable, and a median survival of 3-5 years has been reported with the use of current treatments. Viral-based therapies offer promising alternatives or possible integration with current therapeutic regimens. Among several gene therapy vectors and oncolytic agents, adenovirus has emerged as a promising agent, and it is already being used for the treatment of solid tumors in humans. The main concern with the clinical use of this vector has been its high immunogenicity; adenovirus is often able to induce a strong immune response in the host. Furthermore, new limitations in the efficacy of this therapy, intrinsic to the nature of tumor cells, have been recently observed. For example, our group showed a strong antiviral phenotype in vitro and in vivo in a subset of tumors, shedding new insights that may explain the partial failure of clinical trials based on this promising new therapy. In this review, we describe novel therapeutic approaches that implement viral-based treatments in hematological malignancies and address the novelty as well as the possible limitations of these new therapies, especially in the context of the use of adenoviral vectors for treating multiple myeloma.

      • KCI등재

        Mechanism of Immune Response During Immunotherapy

        Monica C. Panelli,Dirk Nagorsen,Ena Wang,Vladia Monsurro,Ping Jin,Zavaglia Katia,Kina Smith,Yvonne Ngalame,Francesco M Marincola 연세대학교의과대학 2004 Yonsei medical journal Vol.45 No.SUP

        Tumor immunology embraces an extensive array of biological phenomena that include interactions between neoplastic cells and the innate and adaptive immune response. Among immune cells, T cells have taken the center stage because they can be easily demonstrated to specifically recognize autologous cancer cells. However, their role is limited and other components of the immune response are likely necessary for the completion of cancer rejection. Metastatic melanoma and renal cell carcinoma (RCC) are malignancies strongly predisposed to regress in response to the systemic administration of high-dose interleukin (IL)-2. Several clinical Studies in extensive cohorts of patients have shown that this treatment can induce complete or partial clinical regressions of metastatic disease in 15 to 20% of patients who receive this treatment.1-6 Although IL-2 has direct pluri-potent effects on cells with immune and inflammatory function, it remains unexplained which cell subset is implicated in mediating tumor regression. In a quest to characterize the mechanism of action of IL-2 during the course of immunotherapy, we have investigated the early changes in transcriptional profiles of circulating mononuclear cells and microenvironment of melanoma metastases following high dose IL-2 administration (720,000IU/kg) by serial sampling of blood cells and tumors in the form of fine needle aspirate (FNA).7 Furthermore, studies are currently ongoing to characterize the proteomic profiling of RCC patients undergoing the same treatment using protein arrays (manuscript in preparation). The predominant activation of genes related to inflammation and activation of mononuclear phagocytes lead us to further characterize this cell subset in the context of stimulation with a panel of soluble factors potentially present in the circulation and tumor microenvironment.

      • KCI등재
      • KCI등재

        Next generation sequencing: new tools in immunology and hematology

        Antonio Mori,Sara Deola,Luciano Xumerle,Vladan Mijatovic,Giovanni Malerba,Vladia Monsurrò 대한혈액학회 2013 Blood Research Vol.48 No.4

        One of the hallmarks of the adaptive immune system is the specificity of B and T cell receptors. Thanks to somatic recombination, a large repertoire of receptors can be gen-erated within an individual that guarantee the recognition of a vast number of antigens. Monoclonal antibodies have limited applicability, given the high degree of diversity among these receptors, in BCR and TCR monitoring. Furthermore, with regard to cancer, better characterization of complex genomes and the ability to monitor tumor-specific cryptic mutations or translocations are needed to develop better tailored therapies. Novel technologies, by enhancing the ability of BCR and TCR monitoring, can help in the search for minimal residual disease during hematological malignancy diagnosis and follow-up, and can aid in improving bone marrow transplantation techniques. Recently, a novel tech-nology known as next generation sequencing has been developed; this allows the recog-nition of unique sequences and provides depth of coverage, heterogeneity, and accuracy of sequencing. This provides a powerful tool that, along with microarray analysis for gene expression, may become integral in resolving the remaining key problems in hematology. This review describes the state of the art of this novel technology, its application in the immunological and hematological fields, and the possible benefits it will provide for the hematology and immunology community.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼