RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Neural-network-based Control System for a Dynamic Model of Tractor With Multiple Trailers System

        Wojciech Paszkowiak,Marcin Pelic,Tomasz Bartkowiak 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.10

        Tractors with multiple trailers are widely applied means of transport in manufacturing systems. There exist numerous designs of trailers and tractors, making the estimation of the system trajectory and the required transportation corridor a complex task. It is also difficult to achieve the same trajectory for a manually operated tractor for multiple runs. The problem is complicated if there are multiple towed trailers or a dynamic drive on slippery ground. One approach is to replace the driver with an automated steering system. This paper presents a dynamic model of a tractor with multiple trailer system, based on the Lagrange formalism, which is controlled by artificial neural networks. To account for the slip phenomenon, a sigmoidal tire model was used. The algorithm of the artificial neural network provides the most appropriate input parameters for tractor steering for a given transportation area. The input parameters are the torques applied to the tractor wheels and are determined by the algorithm based on the data collected by the LiDAR scanner during the train run. These data include distances for each unit from the obstacle (e.g., wall), information about the occurrence of a collision, and the distance traveled by the tractor. The simulation results of the integration of the dynamic model and the neural network modeled are presented in a graphic form. The proposed algorithm ensures a collision-free ride of the system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼