RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels

        Soussia, Ismail Ben,Choveau, Frank S.,Blin, Sandy,Kim, Eun-Jin,Feliciangeli, Sylvain,Chatelain, Franck C.,Kang, Dawon,Bichet, Delphine,Lesage, Florian Frontiers Media S.A. 2018 Frontiers in molecular neuroscience Vol.11 No.-

        <P>TREK/TRAAK channels are polymodal K<SUP>+</SUP> channels that convert very diverse stimuli, including bioactive lipids, mechanical stretch and temperature, into electrical signals. The nature of the structural changes that regulate their activity remains an open question. Here, we show that a cytoplasmic domain (the proximal C-ter domain, pCt) exerts antagonistic effects in TREK1 and TRAAK. In basal conditions, pCt favors activity in TREK1 whereas it impairs TRAAK activity. Using the conformation-dependent binding of fluoxetine, we show that TREK1 and TRAAK conformations at rest are different, and under the influence of pCt. Finally, we show that depleting PIP<SUB>2</SUB> in live cells has a more pronounced inhibitory effect on TREK1 than on TRAAK. This differential regulation of TREK1 and TRAAK is related to a previously unrecognized PIP<SUB>2</SUB>-binding site (R329, R330, and R331) present within TREK1 pCt, but not in TRAAK pCt. Collectively, these new data point out pCt as a major regulatory domain of these channels and suggest that the binding of PIP<SUB>2</SUB> to the pCt of TREK1 results in the stabilization of the conductive conformation in basal conditions.</P>

      • Mixing and matching TREK/TRAAK subunits generate heterodimeric K<sub>2P</sub> channels with unique properties

        Blin, Sandy,Ben Soussia, Ismail,Kim, Eun-Jin,Brau, Fré,dé,,ric,Kang, Dawon,Lesage, Florian,Bichet, Delphine National Academy of Sciences 2016 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.113 No.15

        <P>The tandem of pore domain in a weak inwardly rectifying K+ channel (Twik)-related acid-arachidonic activated K+ channel (TRAAK) and Twik-related K+ channels (TREK) 1 and TREK2 are active as homodimers gated by stretch, fatty acids, pH, and G protein-coupled receptors. These two-pore domain potassium (K-2P) channels are broadly expressed in the nervous system where they control excitability. TREK/TRAAK KO mice display altered phenotypes related to nociception, neuroprotection afforded by polyunsaturated fatty acids, learning and memory, mood control, and sensitivity to general anesthetics. These channels have emerged as promising targets for the development of new classes of anesthetics, analgesics, antidepressants, neuroprotective agents, and drugs against addiction. Here, we show that the TREK1, TREK2, and TRAAK subunits assemble and form active heterodimeric channels with electrophysiological, regulatory, and pharmacological properties different from those of homodimeric channels. Heteromerization occurs between all TREK variants produced by alternative splicing and alternative translation initiation. These results unveil a previously unexpected diversity of K-2P channels that will be challenging to analyze in vivo, but which opens new perspectives for the development of clinically relevant drugs.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼