RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Applying 3D U-statistic method for modeling the iron mineralization in Baghak mine, central section of Sangan iron mines

        Seyyed Saeed Ghannadpour,Ardeshir Hezarkhani,Abbas Golmohammadi 한국자원공학회 2018 Geosystem engineering Vol.21 No.5

        The U-statistic method is one of the most important structural methods to separate the anomaly from background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, 3D U-statistic method has been applied for the first time through the three-dimensional (3D) modeling of an ore deposit. In order to achieve this purpose, 3D U-statistic is applied on the data (Fe grade) resulted from the drilling network in Baghak mine, central part of the Sangan iron mines (in Khorassan Razavi Province, Iran). Afterward, results from applying 3D U-statistic method are used for 3D modeling of the iron mineralization. Results show that the anomalous values are well separated from background so that the determined samples as anomalous are not dispersed and according to their positioning, denser areas of anomalous samples could be considered as anomaly areas. And also, final results (3D model of iron mineralization) show that output model using this method is compatible with designed model for mining operation. Moreover, seen that U-statistic method in addition for separating anomaly from background, could be very efficient for the 3D modeling of different ore type.

      • KCI등재

        Gold Shell Nanocluster Networks in Designing Four-branch (1×4) Y-Shape Optical Power Splitters

        Arash Ahmadivand,Saeed Golmohammadi 한국광학회 2014 Current Optics and Photonics Vol.18 No.3

        In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (λ~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch (1×4) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 μm decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼