RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSSCIE

        Wintertime aerosol optical and radiative properties in the Kathmandu Valley during the SusKat-ABC field campaign

        Cho, Chaeyoon,Kim, Sang-Woo,Rupakheti, Maheswar,Park, Jin-Soo,Panday, Arnico,Yoon, Soon-Chang,Kim, Ji-Hyoung,Kim, Hyunjae,Jeon, Haeun,Sung, Minyoung,Kim, Bong Mann,Hong, Seungkyu K.,Park, Rokjin J.,Ru Copernicus GmbH 2017 Atmospheric Chemistry and Physics Vol.17 No.20

        <P>Abstract. Particulate air pollution in the Kathmandu Valley has reached severe levels that are mainly due to uncontrolled emissions and the location of the urban area in a bowl-shaped basin with associated local wind circulations. The AERONET measurements from December 2012 to August 2014 revealed a mean aerosol optical depth (AOD) of approximately 0.30 at 675 nm during winter, which is similar to that of the post-monsoon but half of that of the pre-monsoon AOD (0.63). The distinct seasonal variations are closely related to regional-scale monsoon circulations over South Asia and emissions in the Kathmandu Valley. During the SusKat-ABC campaign (December 2012-February 2013), a noticeable increase in both aerosol scattering (σs; 313 → 577 Mm−1 at 550 nm) and absorption (σa; 98 → 145 Mm−1 at 520 nm) coefficients occurred before and after 4 January 2013. This can be attributed to the increase in wood-burned fires due to a temperature drop and the start of firing at nearby brick kilns. The σs value in the Kathmandu Valley was a factor of 0.5 lower than that in polluted cities in India. The σa value in the Kathmandu Valley was approximately 2 times higher than that at severely polluted urban sites in India. The aerosol mass scattering efficiency of 2.6 m2 g−1 from PM10 measurements in the Kathmandu Valley is similar to that reported in urban areas. However, the aerosol mass absorption efficiency was determined to be 11 m2 g−1 from PM10 measurements, which is higher than that reported in the literature for pure soot particles (7.5 ± 1.2 m2 g−1). This might be due to the fact that most of the carbonaceous aerosols in the Kathmandu Valley were thought to be mostly externally mixed with other aerosols under dry conditions due to a short travel time from their sources. The σs and σa values and the equivalent black carbon (EBC) mass concentration reached up to 757 Mm−1, 224 Mm−1, and 29 µg m−3 at 08:00 LST (local standard time), respectively but decreased dramatically during the daytime (09:00-18:00 LST), to one-quarter of the morning average (06:00-09:00 LST) due to the development of valley winds and an atmospheric bounder layer. The σs and σa values and the EBC concentration remained almost constant during the night at the levels of 410 Mm−1, 130 Mm−1, and 17 µg m−3, respectively. The average aerosol direct radiative forcings over the intensive measurement period were estimated to be −6.9 ± 1.4 W m−2 (top of the atmosphere) and −20.8 ± 4.6 W m−2 (surface). Therefore, the high atmospheric forcing (i.e., 13.9 ± 3.6 W m−2) and forcing efficiency (74.8 ± 24.2 W m−2 τ−1) can be attributed to the high portion of light-absorbing aerosols in the Kathmandu Valley, as indicated by the high black carbon (or elemental carbon) to sulphate ratio (1.5 ± 1.1). </P>

      • Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas

        ,thi, Z. L.,Š,kerlak, B.,Kim, S.-W.,Lauer, A.,Mues, A.,Rupakheti, M.,Kang, S. Copernicus GmbH 2015 Atmospheric chemistry and physics Vol.15 No.11

        <P>Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13-19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact. </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼