RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS
      • NoC 시스템을 위한 하드웨어 컴포넌트를 위한 인터페이스 에이전트의 자동 생성

        박정태 ( Jung-tae Park ),장경선 ( Kyoung-son Jhang ),프랑코삐리 ( Franco-pirri ) 한국정보처리학회 2009 한국정보처리학회 학술대회논문집 Vol.16 No.1

        NoC 시스템은 기본적으로 서로 다른 클럭 도메인에서 동작하는 여러 버스 시스템들이 NoC 를 통해서 연결되는 것으로 간주할 수 있다. NoC 에 다른 버스 인터페이스 IP 를 부착하려면 별도의 래퍼를 사용해야 하며, 면적과 지연시간이 추가되는 것이 일반적이다. 본 논문에서는, 추가적인 래퍼의 필요성을 제거하기 위하여, 주어진 버스 인터페이스에 맞는 인터페이스 에이전트 또는 네트워크 인터페이스를 자동 생성하는 방법을 제안한다. 이를 위하여, 한가지 NoC 시스템을 위해 표준적인 패킷 포맷을 정의하였으며, 거기에는 패킷에 대한 라우팅 정보 뿐 아니라, 여러 종류의 버스 프로토콜의 데이터, 주소, 제어 정보도 포함될 수 있도록 정의되었다. 그리고, 인터페이스 에이전트는 표준 패킷 포맷과 특정 버스 인터페이스 프로토콜 간의 변환 작업을 수행한다. 실험을 통해서, PVCI, WISHBONE, AHB, OCP 와 같은 몇 가지 버스 인터페이스에 대해 자동생성된 네트워크 인터페이스들간에, 표준 패킷 포맷을 이용한 데이터 통신이 중요 정보의 손실 없이 잘 이루어짐을 보인다.

      • The 2017 Magnetism Roadmap

        Sander, D,Valenzuela, S O,Makarov, D,Marrows, C H,Fullerton, E E,Fischer, P,McCord, J,Vavassori, P,Mangin, S,Pirro, P,Hillebrands, B,Kent, A D,Jungwirth, T,Gutfleisch, O,Kim, C G,Berger, A Institute of Physics Publishing Ltd. 2017 Journal of Physics. D, Applied Physics Vol.50 No.36

        <P>Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics.</P> <P>Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an accurate snapshot of the world of magnetism in 2017.</P> <P>The article consists of 14 sections, each written by an expert in the field and addressing a specific subject on two pages. Evidently, the depth at which each contribution can describe the subject matter is limited and a full review of their statuses, advances, challenges and perspectives cannot be fully accomplished. Also, magnetism, as a vibrant research field, is too diverse, so that a number of areas will not be adequately represented here, leaving space for further Roadmap editions in the future. However, this 2017 Magnetism Roadmap article can provide a frame that will enable the reader to judge where each subject and magnetism research field stands overall today and which directions it might take in the foreseeable future.</P> <P>The first material focused pillar of the 2017 Magnetism Roadmap contains five articles, which address the questions of atomic scale confinement, 2D, curved and topological magnetic materials, as well as materials exhibiting unconventional magnetic phase transitions. The second pillar also has five contributions, which are devoted to advances in magnetic characterization, magneto-optics and magneto-plasmonics, ultrafast magnetization dynamics and magnonic transport. The final and application focused pillar has four contributions, which present non-volatile memory technology, antiferromagnetic spintronics, as well as magnet technology for energy and bio-related applications. As a whole, the 2017 Magnetism Roadmap article, just as with its 2014 predecessor, is intended to act as a reference point and guideline for emerging research directions in modern magnetism.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼