RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Neferine, a bisbenzylisoquinoline alkaloid, offers protection against cobalt chloride-mediated hypoxia-induced oxidative stress in muscle cells

        Rathinasamy Baskaran,Palanisamy Kalaiselvi,Chih-Yang Huang,Viswanadha Vijaya Padma 한국한의학연구원 2015 Integrative Medicine Research Vol.4 No.4

        Background Neferine, a bisbenzylisoquinoline alkaloid, isolated from Nelumbo nucifera has a wide range of biological activities. Cobalt chloride (CoCl2) was known to mimic hypoxic condition. In the present study, we assessed the cytoprotective effect of neferine against CoCl2-induced oxidative stress in muscle cells. Methods Rhabdomyosarcoma cells were exposed to different concentrations of CoCl2, and the IC50 value was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Lactate dehydrogenase and NO assays were performed in order to determine the cytotoxic effect of CoCl2. Reactive oxygen species generation and cellular antioxidant status were determined for evaluating oxidative stress. For analyzing the effect of neferine on CoCl2-induced apoptosis, propidium iodide staining was performed. Results The results of the present study indicate that CoCl2 induces cell death in a dose-dependent manner. Neferine pretreatment at 700 nM concentration offers better cytoprotection in the cells exposed to CoCl2. Lactate dehydrogenase and NO release in the culture medium were restored after neferine pretreatment. CoCl2 triggers time-dependent reactive oxygen species generation in muscle cells. Further, results of propidium iodide staining, mitochondrial membrane potential, and intracellular calcium accumulation confirm that neferine offers protection against CoCl2-induced hypoxic injury. Depleted activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase due to CoCl2 exposure were also reinstated in the group that received neferine pretreatment. Conclusion Our study suggests that neferine from N. nucifera offers protection to muscle cells by counteracting the oxidative stress induced by CoCl2.

      • KCI등재후보

        Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress

        Vishwanadha Vijaya Padma,Palanisamy Kalaiselvi,Rangasamy Yuvaraj,M. Rabeeth 한국한의학연구원 2015 Integrative Medicine Research Vol.4 No.2

        Background: Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. Methods: The Inhibitory concentration (IC50) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. Results: Mangiferin induced cell death in RD cells with an IC50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. Conclusion: Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼