RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Assessment of structural, biological and drug release properties of electro-sprayed poly lactic acid-dexamethasone coating for biomedical applications

        Mostafa Rahvar,Gholamreza Ahmadi Lakalayeh,Niloofar Nazeri,Bahereh T. Marouf,Mahdieh Shirzad,Azar Najafi T. Shabankareh,Hossein Ghanbari 대한의용생체공학회 2021 Biomedical Engineering Letters (BMEL) Vol.11 No.4

        The efficacy of an implant is highly depends on its coating characteristics mainly determined by polymer properties and coating technique. Electro-spraying is an inexpensive and versatile coating technique with various advantages for biomedical application. In this study, the efficacy of electro-sprayed (ES) poly lactic acid (PLA)-dexamethasone (DEX) coatings for medical implants was evaluated and compared with spin-coated samples as control. Structural properties of coatings were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Confocal and scanning electron microscopy (SEM), contact angle measurement and nanoindentation tests were used to study surface properties. Coating degradation rate and drug release profile were studied for 40 days. Cell viability experiments were also performed on human endothelial (HUVEC) and smooth muscle cells (HUASMC) using MTT assay and SEM. XRD and DSC analysis showed electro-spraying significantly reduce PLA and DEX crystallinity. Surface studies showed ES coatings has significantly higher hydrophobicity and roughness with microbead-nanofiber morphology vs. micro-nanoporous structure of spin-coated samples. Initial burst release of DEX was 22% and 10% after 6 h and total release was 71% and 46% after 40 days for ES and spin-coated samples, respectively. HUVEC viability of ES samples was higher than spin-coated ones after 1 and 4 days. However, dexamethasone release profile reduced HUASMC proliferation in ES PLA-DEX samples in comparison to spin-coated after 1 and 3 days. In conclusion, in vitro results showed potential of ES PLA-DEX as a biocompatible and efficient anti-inflammatory coating with suitable drug release profile for future applications such as coronary drug eluting stents.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼