RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A poroelastic model for ultrasonic wave attenuation in partially frozen brines

        Matsushima, Jun,Nibe, Takao,Suzuki, Makoto,Kato, Yoshibumi,Rokugawa, Shuichi Korean Society of Earth and Exploration Geophysici 2011 지구물리와 물리탐사 Vol.14 No.1

        유체를 포함하는 혼합 매질에서의 탄성파 고유 감쇠에 대한 다양한 메커니즘 중, 탄성파 전파 시 고체와 유체 사이에서의 상대적 운동은 가장 중요한 감쇠 메커니즘 중의 하나이다. 선행 연구에서는 얼음의 미세 공극 안에 존재하는 소금물이 초음파의 전파에 미치는 영향을 분석하기 위하여 얼음과 소금물이 공존하는 매질에서 초음파 전파 실험하였다. 부분적으로 동결된 소금물에서 각기 다른 온도에서의 초음파 감쇠의 물리적인 메커니즘을 350 ~ 600 kHz의 주파수 대역에서 규명하기 위하여, Biot 이론에 입각한 다공성의 탄생 모델을 도입하여 초음파의 전파를 측정하였다. 고체상은 얼음으로, 액체상은 소금물로 가정한 뒤 펄스 핵자기공명기술로 측정한 유체의 성질을 이용하여 각각의 온도에서의 공극률을 계산한 결과, 실험으로 측정한 감쇠값은 500 kHz에서 계산된 고유 감쇠값과 다르게 나타났으며 이는 squirt -flow 메커니즘과 파의 산란 효과와 같은 다른 감쇠 메커니즘도 고려해야 한다는 것을 의미한다.

      • KCI등재

        부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델

        ( Jun Matsushima ),( Takao Nibe ),( Makoto Suzuki ),( Yoshibumi Kato ),( Shuichi Rokugawa ) 한국지구물리·물리탐사학회 2011 지구물리와 물리탐사 Vol.14 No.1

        유체를 포함하는 혼합 매질에서의 탄성파 고유 감쇠에 대한 다양한 메커니즘 중, 탄성파 전파 시 고체와 유체 사이에서의 상대적 운동은 가장 중요한 감쇠 메커니즘 중의 하나이다. 선행 연구에서는 얼음의 미세 공극 안에 존재하는 소금물이 초음파의 전파에 미치는 영향을 분석하기 위하여 얼음과 소금물이 공존하는 매질에서 초음파 전파 실험하였다. 부분적으로 동결된 소금물에서 각기 다른 온도에서의 초음파 감쇠의 물리적인 메커니즘을 350~600 kHz의 주파수 대역에서 규명하기 위하여, Biot 이론에 입각한 다공성의 탄성 모델을 도입하여 초음파의 전파를 측정하였다. 고체상은 얼음으로, 액체상은 소금물로 가정한 뒤 펄스 핵자기공명기술로 측정한 유체의 성질을 이용하여 각각의 온도에서의 공극률을 계산한 결과, 실험으로 측정한 감쇠값은 500 kHz에서 계산된 고유 감쇠값과 다르게 나타났으며 이는 squirt-flow 메커니즘과 파의 산란 효과와 같은 다른 감쇠 메커니즘도 고려해야 한다는 것을 의미한다. Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350-600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼