RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Enhancing PHY Security of Cooperative Cognitive Radio Multicast Communications

        Nguyen, Van-Dinh,Duong, Trung Q.,Shin, Oh-Soon,Nallanathan, Arumugam,Karagiannidis, George K. IEEE 2017 IEEE transactions on cognitive communications and Vol.3 No.4

        <P>In this paper, we propose a cooperative approach to improve the security of both primary and secondary systems in cognitive radio multicast communications. During their access to the frequency spectrum licensed to the primary users, the secondary unlicensed users assist the primary system in fortifying security by sending a jamming noise to the eavesdroppers, while simultaneously protect themselves from eavesdropping. The main objective of this paper is to maximize the secrecy rate of the secondary system, while adhering to all individual primary users’ secrecy rate constraints. In the case of active eavesdroppers and perfect channel state information (CSI) at the transceivers, the utility function of interest is nonconcave and the involved constraints are nonconvex, and thus, the optimal solutions are troublesome. To solve this problem, we propose an iterative algorithm to arrive at least to a local optimum of the original nonconvex problem. This algorithm is guaranteed to achieve a Karush–Kuhn–Tucker solution. Then, we extend the optimization approach to the case of passive eavesdroppers and imperfect CSI knowledge at the transceivers, where the constraints are transformed into a linear matrix inequality and convex constraints, in order to facilitate the optimal solution.</P>

      • SMIET: Simultaneous Molecular Information and Energy Transfer

        Guo, Weisi,Deng, Yansha,Yilmaz, H. Birkan,Farsad, Nariman,Elkashlan, Maged,Eckford, Andrew,Nallanathan, Arumugam,Chae, Chan-Byoung IEEE 2018 IEEE wireless communications Vol.25 No.1

        <P>The performance of communication systems is fundamentally limited by the loss of energy through propagation and circuit inefficiencies. The emergence of the Internet of Nano Things ecosystem means there is a need to design and build nanoscale energy efficient communication subsystems. In this article, we show that it is possible to achieve ultra low energy communications at the nanoscale, if diffusive molecules are used for carrying data. While the energy of electromagnetic waves will inevitably decay as a function of transmission distance and time, the energy in individual molecules does not. Over time, the receiver has an opportunity to recover some, if not all, of the molecular energy transmitted. The article demonstrates the potential of ultra-low energy SMIET through point-to-point systems, two different nano-relay systems, and multiple access systems. It also discusses the benefits of crowd energy harvesting compared to traditional wavebased systems.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼