RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problems

        Yıldız Betül Sultan,Mehta Pranav,Panagant Natee,Mirjalili Seyedali,Yildiz Ali Riza 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.6

        This study proposes a novel hybrid metaheuristic optimization algorithm named chaotic Runge Kutta optimization (CRUN). In this study, 10 diverse chaotic maps are being incorporated with the base Runge Kutta optimization (RUN) algorithm to improve their performance. An imperative analysis was conducted to check CRUN’s convergence proficiency, sustainability of critical constraints, and effectiveness. The proposed algorithm was tested on six well-known design engineering tasks, namely: gear train design, coupling with a bolted rim, pressure vessel design, Belleville spring, and vehicle brake-pedal optimization. The results demonstrate that CRUN is superior compared to state-of-the-art algorithms in the literature. So, in each case study, CRUN was superior to the rest of the algorithms and furnished the best-optimized parameters with the least deviation. In this study, 10 chaotic maps were enhanced with the base RUN algorithm. However, these chaotic maps improve the solution quality, prevent premature convergence, and yield the global optimized output. Accordingly, the proposed CRUN algorithm can also find superior aspects in various spectrums of managerial implications such as supply chain management, business models, fuzzy circuits, and management models.

      • KCI등재

        An improved heat transfer search algorithm for unconstrained optimization problems

        Ghanshyam G. Tejani,Vimal J.Savsani,Vivek K.Patel,Seyedali Mirjalili 한국CDE학회 2019 Journal of computational design and engineering Vol.6 No.1

        In this work, an improved heat transfer search (IHTS) algorithm is proposed by incorporating the effect of the simultaneous heat transfer modes and population regeneration in the basic HTS algorithm. The basic HTS algorithm considers only one of the modes of heat transfer (conduction, convection, and radiation) for each generation. In the proposed algorithms, however, the system molecules are considered as the search agents that interact with each other as well as with the surrounding to a state of the thermal equi-librium. Another improvement is the integration of a population regenerator to reduce the probability of local optima stagnation. The population regenerator is applied to the solutions without improvements for a pre-defined number of iterations. The feasibility and effectiveness of the proposed algorithms are investigated by 23 classical benchmark functions and 30 functions extracted from the CEC2014 test suite. Also, two truss design problems are solved to demonstrate the applicability of the proposed algorithms. The results show that the IHTS algorithm is more effective as compared to the HTS algorithm. Moreover, the IHTS algorithm provides very competitive results compared to the existing meta-heuristics in the literature.

      • KCI등재

        Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems

        Premkumar M,Jangir Pradeep,Sowmya R,Alhelou Hassan Haes,Mirjalili Seyedali,Kumar B Santhosh 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.1

        This paper proposes a new Multi-Objective Equilibrium Optimizer (MOEO) to handle complex optimization problems, including real-world engineering design optimization problems. The Equilibrium Optimizer (EO) is a recently reported physics-based metaheuristic algorithm, and it has been inspired by the models used to predict equilibrium state and dynamic state. A similar procedure is utilized in MOEO by combining models in a different target search space. The crowding distance mechanism is employed in the MOEO algorithm to balance exploitation and exploration phases as the search progresses. In addition, a non-dominated sorting strategy is also merged with the MOEO algorithm to preserve the population diversity and it has been considered as a crucial problem in multi-objective metaheuristic algorithms. An archive with an update function is used to uphold and improve the coverage of Pareto with optimal solutions. The performance of MOEO is validated for 33 contextual problems with 6 constrained, 12 unconstrained, and 15 practical constrained engineering design problems, including non-linear problems. The result obtained by the proposed MOEO algorithm is compared with other state-of-the-art multi-objective optimization algorithms. The quantitative and qualitative results indicate that the proposed MOEO provides more competitive outcomes than the different algorithms. From the results obtained for all 33 benchmark optimization problems, the efficiency, robustness, and exploration ability to solve multi-objective problems of the MOEO algorithm are well defined and clarified. The paper is further supported with extra online service and guideline at https://premkumarmanoharan.wixsite.com/mysite.

      • KCI등재

        Enhancing feature selection with GMSMFO: A global optimization algorithm for machine learning with application to intrusion detection

        Hussein Nazar K,Qaraad Mohammed,Amjad Souad,Farag M.A.,Hassan Saima,Mirjalili Seyedali,Elhosseini Mostafa A 한국CDE학회 2023 Journal of computational design and engineering Vol.10 No.4

        The paper addresses the limitations of the Moth-Flame Optimization (MFO) algorithm, a meta-heuristic used to solve optimization problems. The MFO algorithm, which employs moths' transverse orientation navigation technique, has been used to generate solutions for such problems. However, the performance of MFO is dependent on the flame production and spiral search components, and the search mechanism could still be improved concerning the diversity of flames and the moths' ability to find solutions. The authors propose a revised version called GMSMFO, which uses a Novel Gaussian mutation mechanism and shrink MFO to enhance population diversity and balance exploration and exploitation capabilities. The study evaluates the performance of GMSMFO using the CEC 2017 benchmark and 20 datasets, including a high-dimensional intrusion detection system dataset. The proposed algorithm is compared to other advanced metaheuristics, and its performance is evaluated using statistical tests such as Friedman and Wilcoxon rank-sum. The study shows that GMSMFO is highly competitive and frequently superior to other algorithms. It can identify the ideal feature subset, improving classification accuracy and reducing the number of features used. The main contribution of this research paper includes the improvement of the exploration/exploitation balance and the expansion of the local search. The ranging controller and Gaussian mutation enhance navigation and diversity. The research paper compares GMSMFO with traditional and advanced metaheuristic algorithms on 29 benchmarks and its application to binary feature selection on 20 benchmarks, including intrusion detection systems. The statistical tests (Wilcoxon rank-sum and Friedman) evaluate the performance of GMSMFO compared to other algorithms. The algorithm source code is available at https://github.com/MohammedQaraad/GMSMFO-algorithm.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼