RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Graphene nanoribbon devices at high bias

        Philip Kim,Melinda Y Han 나노기술연구협의회 2014 Nano Convergence Vol.1 No.1

        We present the electron transport in graphene nanoribbons (GNRs) at high electric bias conduction. When graphene is patterned into a few tens of nanometer width of a ribbon shape, the carriers are confined to a quasi-one-dimensional (1D) system. Combining with the disorders in the system, this quantum confinement can lead into a transport gap in the energy spectrum of the GNRs. Similar to CNTs, this gap depends on the width of the GNR. In this review, we examine the electronic properties of lithographically fabricated GNRs, focusing on the high bias transport characteristics of GNRs as a function of density tuned by a gate voltage. We investigate the transport behavior of devices biased up to a few volts, a regime more relevant for electronics applications. We find that the high bias transport behavior in this limit can be described by hot electron scattered by the surface phonon emission, leading to a carrier velocity saturation. We also showed an enhanced current saturation effect in the GNRs with an efficient gate coupling. This effect results from the introduction of the charge neutrality point into the channel, and is similar to pinch-off in MOSFET devices. We also observe that heating effects in graphene at high bias are significant.

      • Raman Spectroscopy of Lithographically Patterned Graphene Nanoribbons

        Ryu, Sunmin,Maultzsch, Janina,Han, Melinda Y.,Kim, Philip,Brus, Louis E. American Chemical Society 2011 ACS NANO Vol.5 No.5

        <P>Nanometer-scale graphene objects are attracting much research interest because of newly emerging properties originating from quantum confinement effects. We present Raman spectroscopy studies of graphene nanoribbons (GNRs), which are known to have nonzero electronic bandgap. GNRs of width ranging from 15 to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by an upshifted G band and a prominent disorder-related D band originating from scattering at the ribbon edges. The D-to-G band intensity ratio generally increases with decreasing ribbon width. However, its decrease in width of <25 nm, partly attributed to amorphization at the edges, provides a valuable experimental estimate on D mode relaxation length of <5 nm. The upshift in the G band of the narrowest GNRs can be attributed to confinement effect or chemical doping by functional groups on the GNR edges. Notably, GNRs are much more susceptible to photothermal effects resulting in reversible hole doping caused by atmospheric oxygen than bulk graphene sheets. Finally we show that the 2D band is still a reliable marker in determining the number of layers of GNRs despite its significant broadening for very narrow GNRs.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2011/ancac3.2011.5.issue-5/nn200799y/production/images/medium/nn-2011-00799y_0006.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/nn200799y'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼