RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Time Scales in Epigenetic Dynamics and Phenotypic Heterogeneity of Embryonic Stem Cells

        Sasai, Masaki,Kawabata, Yudai,Makishi, Koh,Itoh, Kazuhito,Terada, Tomoki P.,Marti-Renom, Marc A. Public Library of Science 2013 PLoS computational biology Vol.9 No.12

        <▼1><P>A remarkable feature of the self-renewing population of embryonic stem cells (ESCs) is their phenotypic heterogeneity: Nanog and other marker proteins of ESCs show large cell-to-cell variation in their expression level, which should significantly influence the differentiation process of individual cells. The molecular mechanism and biological implication of this heterogeneity, however, still remain elusive. We address this problem by constructing a model of the core gene-network of mouse ESCs. The model takes account of processes of binding/unbinding of transcription factors, formation/dissolution of transcription apparatus, and modification of histone code at each locus of genes in the network. These processes are hierarchically interrelated to each other forming the dynamical feedback loops. By simulating stochastic dynamics of this model, we show that the phenotypic heterogeneity of ESCs can be explained when the chromatin at the <I>Nanog</I> locus undergoes the large scale reorganization in formation/dissolution of transcription apparatus, which should have the timescale similar to the cell cycle period. With this slow transcriptional switching of <I>Nanog</I>, the simulated ESCs fluctuate among multiple transient states, which can trigger the differentiation into the lineage-specific cell states. From the simulated transitions among cell states, the epigenetic landscape underlying transitions is calculated. The slow <I>Nanog</I> switching gives rise to the wide basin of ESC states in the landscape. The bimodal Nanog distribution arising from the kinetic flow running through this ESC basin prevents transdifferentiation and promotes the definite decision of the cell fate. These results show that the distribution of timescales of the regulatory processes is decisively important to characterize the fluctuation of cells and their differentiation process. The analyses through the epigenetic landscape and the kinetic flow on the landscape should provide a guideline to engineer cell differentiation.</P></▼1><▼2><P><B>Author Summary</B></P><P>Embryonic stem cells (ESCs) can proliferate indefinitely by keeping pluripotency, i.e., the ability to differentiate into any cell-lineage. ESCs, therefore, have been the focus of intense biological and medical interests. A remarkable feature of ESCs is their phenotypic heterogeneity: ESCs show large cell-to-cell fluctuation in the expression level of Nanog, which is a key factor to maintain pluripotency. Since Nanog regulates many genes in ESCs, this fluctuation should seriously affect individual cells when they start differentiation. In this paper we analyze this phenotypic fluctuation by simulating the stochastic dynamics of gene network in ESCs. The model takes account of the mutually interrelated processes of gene regulation such as binding/unbinding of transcription factors, formation/dissolution of transcription apparatus, and histone-code modification. We show the distribution of timescales of these processes is decisively important to characterize the dynamical behavior of the gene network, and that the slow formation/dissolution of transcription apparatus at the <I>Nanog</I> locus explains the observed large fluctuation of ESCs. The epigenetic landscapes are calculated based on the stochastic simulation, and the role of the phenotypic fluctuation in the differentiation process is analyzed through the landscape picture.</P></▼2>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼