RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Mechanical, dielectric and structural characterization of cross-linked PEG-diacrylate/ethylammonium nitrate ionogels

        Lopez-Barron, C.R.,Beltramo, P.J.,Liu, Y.,Choi, S.M.,Lee, M.J. Butterworth Scientific Ltd. etc. 2016 Polymer Vol. No.

        We report the preparation and characterization of cross-linked ionogels (x-IGs) composed of polyethylene glycol diacrylate (PEGDA) and the protic ionic liquid, ethylammonium nitrate (EAN). The cross-linking process has a huge effect on the mechanical properties of the solutions (forming stiff solids from Newtonian solutions) and a minimum penalty on the ionic conductivity. The interdependence of the mechanical and dielectric properties with the network structure of the x-IGs was studied using three experimental probes: torsion and compression mechanical testing, dielectric spectroscopy and small angle neutron scattering. The microstructure, the mechanical strength and the conductivity of the x-IGs depend strongly on the polymer concentration and weakly on the temperature. High modulus and relatively low conductivities are associated to small cross-link junction lengths, ξ, observed in concentrated samples, whereas large ξ values, observed in dilute samples, result in high conductivities and relatively low modulus. The topological restriction to ionic transport (i.e., to conductivity) is quantified by the obstruction factor, which increases monotonically with ξ, while the shear modulus exhibits a power law behavior, G~ξ<SUP>-3</SUP>, in accordance to linear viscoelastic theory.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼