RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Exergy analysis and optimization of Natural Gas Liquids Recovery unit

        Hossein Khajehpour,Nima Norouzi,Navid Shiva,Reza Mahmoodi Folourdi,Ehsan Hashemi Bahremani 대한설비공학회 2021 International Journal Of Air-Conditioning and Refr Vol.29 No.1

        The Natural Gas Liquids (NGL) recovery unit is one of the processes that requires cooling. The sweetened gas enters this unit after the dehydration stage, and the final product called NGL Product is stored and ready for consumption or export. In this research, the first, one of the NGL units, is simulated with HYSYS software. Three types of processes with different cooling systems are studied using the exergy analysis method. Joule–Thomson’s combination with the expander is selected for its high exergy efficiency, and the exergy efficiency function has been selected as the objective function 1 to optimize this process mathematically based on this study’s findings. The critical term in this objective function is the work of the compressors and turboexpanders in the process. After defining the optimization problem, the problem is optimized by two genetic algorithms and SQP, considering the process constraints and the process’s initial conditions. Finally, using the genetic algorithm’s data application to the simulated process, a 15% increase in the plant’s exergic efficiency was observed.

      • KCI등재

        An exergetic model for the ambient air temperature impacts on the combined power plants and its management using the genetic algorithm

        Hossein Khajehpour,Nima Norouzi,Maryam Fani 대한설비공학회 2021 International Journal Of Air-Conditioning and Refr Vol.29 No.1

        4E analysis is used on a Brayton–Rankine combined cycle power plant (CCPP) with a dual pressure heat recovery steam generation (HRSG) system. A multi-objective genetic-based evolutionary optimization has been used to estimate the most optimal exergy efficiency status, exergy cost reduction, carbon emission reduction, and NOx emission reduction. For the validation of the data, the simulation results are compared with the plant’s data. This study investigates the effect of every decisive parameter on the objective performance parameters of the CCPP. The primary estimated results are the emission rates, efficiencies, and the exergoeconomic cost of the system. At the optimum operational state, the exergy efficiency may increase by 10%, while the total emissions may decrease by 14.6%. The conventional technical measures’ effectiveness to improve the combined cycle power plant’s energy performance is applied to the simulated case study. Results have shown that the main source of the exergy destruction in this system is the HRSG and the combustion chamber, and also the overall performance of the plant shows great sensitivity to the ambient air temperature. This fact has shown that climate change and global warming are effective in thermal power plants’ performance. Therefore, the effect of the climate change on the ambient air temperature impact on the power plant and the 4E performance of the simulated combined cycle power plant is also studied. The results show that, due to the global warming effect, the exergy efficiency of the CCPP unit is decreased by over 0.2% in the last two decades, which can be generalized to all thermal electricity generation units throughout the world based on the mean global temperature rise in the last decades

      • SCIESCOPUSKCI등재

        Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

        Norouzi, Nima,Talebi, Saeed,Fani, Maryam,Khajehpour, Hossein Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.8

        This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H<sub>2</sub>), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼