RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Characterization of bare and modified nano-zirconium oxide (ZrO2) and their applications as adsorbents for the removal of bivalent heavy metals

        Shahriar Mahdavi,Nadereh Amini,Hajar Merrikhpour,Davoud Akhzari 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.1

        The ability of nano-ZrO2 and modified nano-ZrO2 with humic acid (ZrO2-H) to remove Cd2+, Cu2+ and Ni2+ from aqueous media has been tested by batch sorption studies varying the contact time, initial metal concentration, initial solution pH, sorbent dosage and temperature to understand the adsorption behavior of these metals through adsorption kinetics and isotherms. The bare nanoparticles (NPs) and modified NPs (MNPs) were characterized using X-ray powder diffraction (XRD), SEM-EDX, FTIR to determine the phase, average grain size, morphology, surfacial elemental compounds and functional groups of NPs and MNPs. The pH of the solutions and the temperature controlled the adsorption of metal ions by NPs and MNPs as well as maximum uptake occurred in the first 120min of reaction in almost all metals. The kinetics of adsorption followed a pseudo-second-order rate equation (R2>0.97) and the isotherms were well described by the Freundlich model in Cd2+ and Cu2+, but in Ni2+ isotherms were better described by Langmuir model. The adsorption of metals onto almost all NPs and MNPs were spontaneous and endothermic in nature. Among the three metals, Cd2+ showed more preference towards the sites on ZrO2 and ZrO2-H than Cu2+ and Ni2+. This study reveals that ZrO2 and ZrO2-H are effective adsorbents in removing Cd2+, Cu2+ and Ni2+ from the aqueous environment with an adsorptive capacity of 46.2, 59.7, 39.5, 29.7, 9.2 and 16.7mg·g−1, respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼