RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Performance Improvement of Hydrophobized Bacterial Cellulose Films as Wound Dressing

        Katlyn Bazoli dos Santos,Gustavo Eiji Higawa,Karen Stefany Conceição,Denise Coutinho Endringerv,Elisangela Flavia Pimentel Schmitt,Lorena Martins Xavier,Marcio Fronza,Alessandra Stevanato,Cesar August 한국고분자학회 2022 Macromolecular Research Vol.30 No.2

        In the wound dressing research field, there is a continuous search for high-quality materials which present properties superior to those already used. Bacterial cellulose films are recognized as being effective, but their performance can still be further enhanced. On the other hand, wound dressings which present surfaces modified with hydrophobic molecules, such as dialkyl carbamoyl chloride, appear to be an alternative material, acting as antimicrobial dressings. Based on that, this paper describes the synthesis of small hydrophobic molecules based on inexpensive alcohols, such as octyl and benzyl alcohol, conjugated to the hydroxyl groups of bacterial cellulose. The films were prepared using ultrasound irradiation and characterized via infrared, as well as for their wettability and water absorption capacity, which showed greater contact angles and similar moisture retention when compared to unmodified films. Morphological aspects of modified films were analyzed by scanning electron microscope (SEM) and minimal modification in the structure was found. The hydrophobized cellulose films showed cytocompatibility with fibroblasts, and antimicrobial activity when compared to native bacterial cellulose films, by reducing the bacterial load up to 75%. This type of modification on these films is of interest in order to prepare films with better properties as dressings based on bacterial cellulose.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼