RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bias Correction and Trend Analysis of Temperature Data by a High-Resolution CMIP6 Model over a Tropical River Basin

        Dinu Maria Jose,Gowdagere Siddaramaiah Dwarakish 한국기상학회 2022 Asia-Pacific Journal of Atmospheric Sciences Vol.58 No.1

        Technological advancements like increase in computational power have led to high-resolution simulations of climate variables by Global Climate Models (GCMs). However, significant biases exist in GCM outputs when considered at a regional scale. Hence, bias correction has to be done before using GCM outputs for impact studies at a local/regional scale. Six bias correction methods, namely, delta change (DC) method, linear scaling (LS), empirical quantile mapping (EQM), adjusted quantile mapping (AQM), Gamma-Pareto quantile mapping (GPQM) and quantile delta mapping (QDM) were used to bias correct the high-resolution daily maximum and minimum temperature simulations by Meteorological Research Institute-Atmospheric General Circulation Model Version 3.2 (MRI-AGCM3–2-S) model which is part of Coupled Model Intercomparison Project Phase 6 (CMIP6), of Netravati basin, a tropical river basin on the south-west coast of India. The quantile-quantile (Q–Q) plots and Taylor diagrams along with performance indicators like Nash–Sutcliffe efficiency (NSE), the Root-Mean Square Error (RMSE) or Root-Mean Square Deviation (RMSD), the Mean Absolute Error (MAE), the Percentage BIAS (PBIAS) and the correlation coefficient (r) were used for the evaluation of the performance of each bias correction method in the validation period. Considerable reduction in the bias was observed for all the bias correction methods employed except for the LS method. The results ofQDMmethod, which is a trend preserving bias correction method, was used for analysing the trend of future temperature data. The trend of historical and future temperature data revealed an increasing trend in the annual temperature. An increase of 0.051 °C and 0.046 °C is expected for maximum and minimum temperature annually during the period 2015 to 2050 as per RCP 8.5 scenario. This study demonstrates that the application of a suitable bias correction is needed before using GCM projections for climate change studies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼