RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks

        Ece Ayli,Eyup Kocak 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.9

        A numerical study is undertaken to investigate the effect of twisted tape inserts on heat transfer. Twisted tapes with various aspect ratios and single, double, and triple inserts are placed inside a tube for Reynolds numbers ranging from 8000 to 12000. Numerical results show that the tube with a twisted tape and different numbers of tape is more effective than the smooth tube in terms of thermo-hydraulic performance. The highest heat transfer is achieved with the triple insert, with the highest turning number and an increment of 15 %. Then, an artificial neural network (ANN) model with a three-layer feedforward neural network is adopted to obtain the Nusselt number on the basis of four inputs for a heated tube with a twisted insert. Several configurations of the neural network are examined to optimize the number of neurons and to identify the most appropriate training algorithm. Finally, the best model is determined with one hidden layer and thirteen neurons in the layer. Bayesian regulation is chosen as the training algorithm. With the optimized algorithm, excellent precision for measuring the output is provided, with R2 = 0.97043. In addition, the optimized ANN architecture is applied to similar studies in the literature to predict the heat transfer performance of twisted tapes. The developed ANN architecture can predict the heat transfer enhancement performance of similar problems with R2 values higher than 0.93.

      • KCI등재

        Supervised learning method for prediction of heat transfer characteristics of nanofluids

        Ece Aylı,Eyup Kocak 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.5

        This study focuses on the alication and investigation of the predictive ability of artificial intelligence in the numerical modelling of nanofluid flows. Numerical and experimental methods are powerful tools from an accuracy point of view, but they are also time- and costconsuming methods. Therefore, using soft-computing techniques can improve such CFD drawbacks by patterning the CFD data. After obtaining the aropriate ANN and ANFIS architecture using the CFD data, many new data can be created without requiring numerical and experimental methods. In the scope of this research, the FCM-ANFIS and ANN methods are used to predict the thermal behaviour of the turbulent flow in a heated pipe with several nanoparticles. A parametric CFD study is carried out for water-TiO 2 , water-CuO, and waterSiO 2 nanofluid through a pipe. The Reynolds number is varied between 7000 and 15000, and the nanofluid concentration is varied between 0.25 % and 4 %. The effects of using nanofluid on local values of Nusselt number and shear stress distribution were investigated. Numerical results indicate that with the increasing nanoparticle volume fraction of nanofluid, the average Nusselt number increases, but the required pumping power also increases. The obtained soft computing results demonstrate that the FCM clustering ANFIS has given better results both in training and testing when it is compared to the ANN architecture with an R 2 of 0.9983. Regarding this, the FCM-ANFIS is an excellent candidate for calculating the Nusselt number in heat transfer problems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼