RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Jacobi–Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression

        Everitt, W.N.,Kwon, K.H.,Littlejohn, L.L.,Wellman, R.,Yoon, G.J. Koninklijke Vlaamse Ingenieursvereniging 2007 Journal of computational and applied mathematics Vol.208 No.1

        <P><B>Abstract</B></P><P>We develop the left-definite analysis associated with the self-adjoint Jacobi operator Ak(α,β), generated from the classical second-order Jacobi differential expression<SUB>ℓα,β,k</SUB>[y](t)=1<SUB>wα,β</SUB>(t)((-(1-t<SUP>)α+1</SUP>(1+t<SUP>)β+1</SUP><SUP>y′</SUP>(t)<SUP>)′</SUP>+k(1-t<SUP>)α</SUP>(1+t<SUP>)β</SUP>y(t))(t∈(-1,1)),in the Hilbert space Lα,β2(-1,1)≔<SUP>L2</SUP>((-1,1);<SUB>wα,β</SUB>(t)), where <SUB>wα,β</SUB>(t)=(1-t<SUP>)α</SUP>(1+t<SUP>)β</SUP>, that has the Jacobi polynomials {Pm(α,β)}m=0∞ as eigenfunctions; here, α,β>-1 and <I>k</I> is a fixed, non-negative constant. More specifically, for each n∈N, we explicitly determine the unique left-definite Hilbert–Sobolev space Wn,k(α,β)(-1,1) and the corresponding unique left-definite self-adjoint operator Bn,k(α,β) in Wn,k(α,β)(-1,1) associated with the pair (Lα,β2(-1,1),Ak(α,β)). The Jacobi polynomials {Pm(α,β)}m=0∞ form a complete orthogonal set in each left-definite space Wn,k(α,β)(-1,1) and are the eigenfunctions of each Bn,k(α,β). Moreover, in this paper, we explicitly determine the domain of each Bn,k(α,β) as well as each integral power of Ak(α,β). The key to determining these spaces and operators is in finding the explicit Lagrangian symmetric form of the integral composite powers of <SUB>ℓα,β,k</SUB>[·]. In turn, the key to determining these powers is a double sequence of numbers which we introduce in this paper as the <I>Jacobi–Stirling numbers</I>. Some properties of these numbers, which in some ways behave like the classical Stirling numbers of the second kind, are established including a remarkable, and yet somewhat mysterious, identity involving these numbers and the eigenvalues of Ak(α,β).</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼