RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Streamflow, stomata, and soil pits: Sources of inference for complex models with fast, robust uncertainty quantification

        Dwelle, M. Chase,Kim, Jongho,Sargsyan, Khachik,Ivanov, Valeriy Y. C.M.L. Publications 2019 ADVANCES IN WATER RESOURCES Vol. No.

        <P><B>Abstract</B></P> <P>The scale and complexity of environmental and earth systems introduce an array of uncertainties that need to be systematically addressed. In numerical modeling, the ever-increasing complexity of representation of these systems confounds our ability to resolve relevant uncertainties. Specifically, the numerical representation of the governing processes involve many inputs and parameters that have been traditionally treated as deterministic. Considering them as uncertain introduces a large computational burden, stemming from the requirement of a prohibitive number of model simulations. Furthermore, within hydrology, most catchments are sparsely monitored, and there are limited, heterogeneous types of data available to confirm the model’s behavior. Here we present a blueprint of a general approach to uncertainty quantification for complex hydrologic models, taking advantage of recent methodological developments. We rely on polynomial chaos machinery to construct accurate surrogates that can be efficiently sampled for the ecohydrologic model tRIBS-VEGGIE to mimic its behavior with respect to a selected set of quantities of interest. The use of the Bayesian compressive sensing technique allows for fewer evaluations of the computationally expensive tRIBS-VEGGIE. The approach enables inference of model parameters using a set of observed hydrologic quantities including stream discharge, water table depth, evapotranspiration, and soil moisture from the Asu experimental catchment near Manaus, Brazil. The results demonstrate the flexibility of the framework for hydrologic inference in watersheds with sparse, irregular observations of varying accuracy. Significant computational savings imply that problems of greater computational complexity and dimension can be addressed using accurate, computationally cheap surrogates for complex hydrologic models. This will ultimately yield probabilistic representation of model behavior, robust parameter inference, and sensitivity analysis without the need for greater investment in computational resources.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A general approach to uncertainty quantification with a complex, process-rich model. </LI> <LI> Construction of efficient surrogate models with Bayesian compressive sensing. </LI> <LI> Robust parametric inference using heterogeneous sources of process-scale data. </LI> <LI> Simultaneous characterization of sensitivity of hydrologic outputs to uncertain variables. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼