RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Lithium-Induced Gray Matter Volume Increase As a Neural Correlate of Treatment Response in Bipolar Disorder: A Longitudinal Brain Imaging Study

        Lyoo, In Kyoon,Dager, Stephen R,Kim, Jieun E,Yoon, Sujung J,Friedman, Seth D,Dunner, David L,Renshaw, Perry F American College of Neuropsychopharmacology 2010 Neuropsychopharmacology Vol.35 No.8

        Preclinical studies suggest that lithium may exert neurotrophic effects that counteract pathological processes in the brain of patients with bipolar disorder (BD). To describe and compare the course and magnitude of gray matter volume changes in patients with BD who are treated with lithium or valproic acid (VPA) compared to healthy comparison subjects, and to assess clinical relationships to gray matter volume changes induced by lithium in patients with BD, we conducted longitudinal brain imaging and clinical evaluations of treatment response in 22 mood-stabilizing and antipsychotic medications-naive patients with BD who were randomly assigned to either lithium or VPA treatment after baseline assessment. Fourteen healthy comparison subjects did not take any psychotropic medications during follow-up. Longitudinal data analyses of 93 serial magnetic resonance images revealed lithium-induced increases in gray matter volume, which peaked at week 10–12 and were maintained through 16 weeks of treatment. This increase was associated with positive clinical response. In contrast, VPA-treated patients with BD or healthy comparison subjects did not show gray matter volume changes over time. Results suggest that lithium induces sustained increases in cerebral gray matter volume in patients with BD and that these changes are related to the therapeutic efficacy of lithium.

      • Astrocytic water channel aquaporin-4 modulates brain plasticity in both mice and humans: a potential gliogenetic mechanism underlying language-associated learning

        Woo, J,Kim, J E,Im, J J,Lee, J,Jeong, H S,Park, S,Jung, S-Y,An, H,Yoon, S,Lim, S M,Lee, S,Ma, J,Shin, E Y,Han, Y-E,Kim, B,Lee, E H,Feng, L,Chun, H,Yoon, B-E,Kang, I,Dager, S R,Lyoo, I K,Lee, C J Macmillan Publishers Limited, part of Springer Nat 2018 Molecular psychiatry Vol.23 No.4

        <P>The role of astrocytes in brain plasticity has not been extensively studied compared with that of neurons. Here we adopted integrative translational and reverse-translational approaches to explore the role of an astrocyte-specific major water channel in the brain, aquaporin-4 (AQP4), in brain plasticity and learning. We initially identified the most prevalent genetic variant of AQP4 (single nucleotide polymorphism of rs162008 with C or T variation, which has a minor allele frequency of 0.21) from a human database (n = 60 706) and examined its functionality in modulating the expression level of AQP4 in an in vitro luciferase reporter assay. In the following experiments, AQP4 knock-down in mice not only impaired hippocampal volumetric plasticity after exposure to enriched environment but also caused loss of long-term potentiation after theta-burst stimulation. In humans, there was a cross-sectional association of rs162008 with gray matter (GM) volume variation in cortices, including the vicinity of the Perisylvian heteromodal language area (Sample 1, n = 650). GM volume variation in these brain regions was positively associated with the semantic verbal fluency. In a prospective follow-up study (Sample 2, n = 45), the effects of an intensive 5-week foreign language (English) learning experience on regional GM volume increase were modulated by this AQP4 variant, which was also associated with verbal learning capacity change. We then delineated in mice mechanisms that included AQP4-dependent transient astrocytic volume changes and astrocytic structural elaboration. We believe our study provides the first integrative evidence for a gliogenetic basis that involves AQP4, underlying language-associated brain plasticity.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼